Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species, Artemisia ordosica

Tianshan Zha1,3,*, Duo Qian2,*, Xin Jia1,3, Yujie Bai1, Yun Tian1, Charles P.-A. Bourque4, Jingyong Ma1, Wei Feng1, Bin Wu1, and Heli Peltola5

1Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
2Beijing Vocational College of Agriculture, Beijing 102442, China
3Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China
4Faculty of Forestry and Environmental Management, 28 Dineen Drive, P.O. Box 4400, University of New Brunswick, New Brunswick, E3B5A3, Canada
5Faculty of Science and Forestry, School of Forest Sciences, University of Eastern Finland, Joensuu, 80101, Finland

*These authors contributed equally to this work.

Correspondence to: Tianshan Zha (tianshanzha@bjfu.edu.cn)

Received: 7 November 2016 – Discussion started: 16 November 2016
Revised: 29 July 2017 – Accepted: 22 August 2017 – Published: 13 October 2017

Abstract. The current understanding of acclimation processes in desert-shrub species to drought stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in Artemisia ordosica and associated environmental variables throughout the growing seasons of 2013 and 2014 (May–September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We found that the occurrence of drought in the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow per leaf area (Js) to decline significantly, resulting in transpiration being 34% lower in 2013 than in 2014. Sap flow per leaf area correlated positively with radiation (Rs), air temperature (T), and water vapor pressure deficit (VPD) when volumetric soil water content (VWC) was greater than 0.10 m³ m⁻³. Diurnal Js was generally ahead of Rs by as much as 6 hours. This time lag, however, decreased with increasing VWC. The relative response of Js to the environmental variables (i.e., Rs, T, and VPD) varied with VWC, Js being more strongly controlled by plant-physiological processes during periods of dryness indicated by a low decoupling coefficient and low sensitivity to the environmental variables. According to this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration) response in Artemisia ordosica to diurnal variations in biophysical factors. This species escaped (acclimated to) water limitations by invoking a water-conservation strategy with the regulation of stomatal conductance and advancement of Js peaking time, manifesting in a hysteresis effect. The findings of this study add to the knowledge of acclimation processes in desert-shrub species under drought-associated stress. This knowledge is essential in modeling desert-shrub-ecosystem functioning under changing climatic conditions.

1 Introduction

This study provides a significant contribution to the understanding of acclimation processes in desert-shrub species to drought-associated stress in dryland ecosystems.

Due to the low amount of precipitation and high potential evapotranspiration in desert ecosystems, low soil water availability limits both plant water- and gas-exchange and, as a consequence, limits vegetation productivity (Razzaghi et al., 2011). Shrub and semi-shrub species are replacing grass species in arid and semi-arid lands in response to ongoing aridification of the land surface (H. Huang et al., 2011). This progression is predicted to continue under a changing climate (Houghton et al., 1999; Pacala et al., 2001; Asner et al., 2003). Studies have shown that desert shrubs are able to adapt to hot, dry environments as a result of their small plant surface area, thick epidermal hairs, and large root-to-shoot.
ratios (Eberbach and Burrows, 2006; Forner et al., 2014). Plant traits related to water use are likely to adapt differently with species and habitat type (Brouillette et al., 2014). Plants may select water-acquisition or water-conservation strategies in response to water limitations (Brouillette et al., 2014). Knowledge of physiological acclimation of changing species to water shortages in deserts, particularly with respect to transpiration, is inadequate and, in the context of plant adaptation to changing climatic conditions, is of immense interest (Jacobsen et al., 2007; H. Huang et al., 2011). Transpiration maintains ecosystem balance through the soil–plant–atmosphere continuum and its magnitude and timing are related to the prevailing biophysical factors (Jarvis, 1976; Jarvis and McNaughton, 1986).

Sap flow can be used to reflect species-specific water consumption by plants (Ewers et al., 2002; Baldocchi, 2005; Naithani et al., 2012). Sap flow can also be used to continuously monitor canopy conductance and its response to environmental variables (Ewers et al., 2007; Naithani et al., 2012). Biotic and abiotic effects on sap flow and transpiration are often interactive and confounded. The decoupling coefficient (Ω) was used to examine the relative contribution of plant control through stomatal regulation of transpiration (Jarvis and McNaughton, 1986). Stomatal regulation becomes stronger as Ω approaches zero. Stomatal conductance (gs) on the plant scale exerts a large biotic control on transpiration particularly during dry conditions (Jarvis, 1976; Jarvis and McNaughton, 1986). Stomatal conductance couples photosynthesis and transpiration (Cowan and Farquhar, 1977), making this parameter an important component of climate models in quantifying biospheric–atmospheric interactions (Baldocchi et al., 2002).

Studies have shown that xylem hydraulic conductivity was closely correlated with drought resistance (Cochar et al., 2008, 2010; Ermajah et al., 2008). With increasing aridity, trees can progressively lessen their stomatal conductance, resulting in lower transpiration (McAdam et al., 2016). Generally, desert shrubs can close their stomata, reducing stomatal conductance, and reduce their water consumption when exposed to dehydration stresses. However, differences exist among shrub species in terms of their stomatal response to changes in air and soil moisture deficits (Pa walls al., 2001).

In Elaeagnus angustifolia, transpiration is observed to peak at noon, i.e., just before stomatal closure under water-deficit conditions (Liu et al., 2011), peaking earlier than radiation, temperature, and water vapor pressure deficit (VPD). This response lag or hysteresis effect has been widely noticed in dryland species (Du et al., 2011; Naithani et al., 2012), but its function is not completely understood. Transpiration in Hedysarum scoparium peaks multiple times during the day. During dry periods of the year, sap flow in Artemisia ordosica has been observed to be controlled by volumetric soil water content (VWC) at about a 30 cm depth in the soil (Li et al., 2014). For other shrubs, sap flow has been observed to decrease rapidly when the VWC is lower than the water loss through evapotranspiration (Buzkova et al., 2015). Sap flow in Caragana korshinskii and Hippophae rhamnoides have been found to increase with increasing rainfall intensity (Jian et al., 2016); whereas in Haloxylon ammodendron, it was found to vary in response to rainfall, from an immediate decline after a heavy rainfall to no observable change after a small rainfall event (Zheng and Wang, 2014). Drought-insensitive shrubs have relatively strong stomatal regulation and, therefore, tend to be insensitive to soil water deficits and rainfall, unlike their drought-sensitive counterparts (Du et al., 2011). Support for the relationship between sap flow in desert shrubs and prevailing environmental factors is decidedly variable (McDowell et al., 2013; Sus et al., 2014), potentially varying with plant habitat and species (Liu et al., 2011). Artemisia ordosica, a shallow-rooted desert shrub, is the dominant species in the Mu Us Desert of northwestern China. It plays an important role in combating desertification and in stabilizing sand dunes (Li et al., 2010). Increases in air temperature, precipitation variability, and associated shorter wet and longer dry periods are expected to ensue under the influence of climate change (Lioubimtseva and Henebry, 2009). However, our understanding of the mechanisms of desert-shrub acclimation during periods of water shortage remains incomplete. Questions that need answers from our research include (1) how do changes in sap flow relate to changes in biotic and abiotic factors, and (2) whether Artemisia ordosica selects a strategy of water-conservation or water-acquisition under conditions of drought? To attend to these questions, we continuously measured stem sap flow in Artemisia ordosica and associated environmental variables in situ throughout the growing seasons of 2013 and 2014 (May–September period of each year). Our findings lead to insights concerning the main environmental factors affecting transpiration in Artemisia ordosica, e.g., optimal temperature, VPD, and VWC. This understanding can lead to improving phytoremediation practices in desert-shrub ecosystems.

2 Materials and methods

2.1 Experimental site

Continuous sap-flow measurements were made at the Yanchi Research Station (37°42′31″ N, 107°13′47″ E; 1530 m above mean sea level), Ningxia, northwestern China. The research station is located between the arid and semi-arid climatic zones along the southern edge of the Mu Us Desert. The sandy soil in the upper 10 cm of the soil profile has a bulk density of 1.54 ± 0.08 g cm⁻³ (mean ± standard deviation, n = 16). Mean annual precipitation in the region is about 287 mm, of which 62% falls between July and September. Mean annual potential evapotranspiration and air temperature are about 2024 mm and 8.1°C, respectively, based on meteorological data (1954–2004) from the Yanchi County weather station. Normally, shrub leaf-expansion,
leaf-expanded, and leaf-coloration stages begin in April, June, and September, respectively (Chen et al., 2015).

2.2 Environmental measurements

Shortwave radiation (R_s, in W m$^{-2}$; CMP3, Kipp & Zonen, the Netherlands), air temperature (T in °C), wind speed (u in m s$^{-1}$, 034B, Met One Instruments Inc., USA), and relative humidity (RH in %; HMP155A, Vaisala, Finland) were measured simultaneously near the sap-flow measurement plot. Half-hourly data were recorded by data logger (CR3000 data logger, Campbell Scientific Inc., USA). VWC at a 30 cm depth were measured using three ECH2O-5TE soil moisture probes (Decagon Devices, USA). In the analysis, we used half-hourly averages of VWC from the three soil moisture probes. VPD (in kPa) was calculated from recorded RH and T.

2.3 Measurements of sap flow, leaf area, and stomatal conductance

The experimental plot (10 × 10 m) was located on the western side of Yanchi Research Station in an Artemisia ordosica-dominated area. The mean age of the Artemisia ordosica was 10-years old. Maximum monthly mean leaf area index (LAI) for plant specimens with full leaf expansion was about 0.1 m2 m$^{-2}$ (Table 1). Over 60% of their roots were distributed in the first 60 cm of the soil complex (Zhao et al., 2010; Jia et al., 2016). Five stems of Artemisia ordosica were randomly selected within the plot as replicates for sap-flow measurement. Mean height and sapwood area of sampled shrubs were 84 cm and 0.17 cm2, respectively. Sampled stems represented the average size of stems in the plot. A heat-balance sensor (Flow32-1K, Dynamax Inc., Houston, USA) was installed at about 15 cm above the ground surface on each of the five stems (Dynamax, 2005). Sap-flow measurements from each stem were taken once per minute. Half-hourly data were recorded by a Campbell CR1000 data logger from 1 May to 30 September, for both 2013 and 2014 (Campbell Scientific, Logan, UT, USA).

Leaf area was estimated for each stem every 7–10 days by sampling about 50–70 leaves from five randomly sampled neighboring shrubs with similar characteristics to the shrubs being used for sap-flow measurements. Leaf area was measured immediately at the station laboratory with a portable leaf-area meter (LI-3000, LI-COR Inc., Lincoln, NE, USA). LAI was measured on a weekly basis from a 4 × 4 grid of 16 quadrats (10 × 10 m each) within a 100 × 100 m plot centered on a flux tower using measurements of sampled leaves and allometric equations (Jia et al., 2014). Stomatal conductance (g_s) was measured in situ for three to four leaves on each of the sampled shrubs with a LI-6400 portable photosynthesis analyzer (LI-COR Inc., Lincoln, NE, USA). The g_s measurements were made every 2 h from 07:00 to 19:00 (all times are local time) every 10 days from May to September 2013 and 2014.

The degree of coupling between the ecosystem surface and the atmospheric boundary layer was estimated with the decoupling coefficient (Ω). The decoupling coefficient varies from zero (i.e., leaf transpiration is mostly controlled by radiation) to one (i.e., leaf transpiration is mostly controlled by radiation). The Ω was calculated as described by Jarvis and McNaughton (1986),

$$\Omega = \frac{\Delta + \gamma}{\Delta + \gamma (1 + \frac{g_s}{\gamma})},$$

(1)

where Δ is the rate of change of saturation vapor pressure vs. temperature (kPa K$^{-1}$), γ is the psychrometric constant (kPa K$^{-1}$), and g_a is the aerodynamic conductance (m s$^{-1}$; Monteith and Unsworth, 1990),

$$g_a = \left(\frac{u}{u^*} + 6.2u^{*0.67}\right)^{-1},$$

(2)

where u is the wind speed (m s$^{-1}$) at 6 m above the ground, and u^* is the friction velocity (m s$^{-1}$), measured by a nearby eddy covariance system (Jia et al., 2014).

2.4 Data analysis

In our analysis, drought days were defined as those days with daily mean VWC < 0.1 m3 m$^{-3}$. This is based on a VWC threshold of 0.1 m3 m$^{-3}$ for the sap flow per leaf area J_s (Fig. 1), with J_s increasing as VWC increased, saturating at a VWC of 0.1 m3 m$^{-3}$, and decreasing as VWC continued.

<table>
<thead>
<tr>
<th></th>
<th>T_r (mm month$^{-1}$)</th>
<th>LAI (m2 m$^{-2}$)</th>
<th>g_s (mol m$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>0.57</td>
<td>1.59</td>
<td>0.02</td>
</tr>
<tr>
<td>June</td>
<td>1.03</td>
<td>2.28</td>
<td>0.05</td>
</tr>
<tr>
<td>July</td>
<td>3.36</td>
<td>3.46</td>
<td>0.10</td>
</tr>
<tr>
<td>August</td>
<td>1.04</td>
<td>2.45</td>
<td>0.08</td>
</tr>
<tr>
<td>September</td>
<td>1.23</td>
<td>1.13</td>
<td>0.05</td>
</tr>
</tbody>
</table>
to increase. The VWC threshold of 0.1 m3 m$^{-3}$ is equivalent to a relative extractable soil water (REW) of 0.4 for drought conditions (Granier et al., 1999, 2007; Zeppel et al., 2004; Fig. 2d, e). Duration and severity of “drought” were defined based on a VWC threshold and REW of 0.4. REW was calculated with

$$\text{REW} = \frac{\text{VWC} - \text{VWC}_{\text{min}}}{\text{VWC}_{\text{max}} - \text{VWC}_{\text{min}}},$$

where VWC is the specific daily soil water content (m3 m$^{-3}$), and VWC$_{\text{min}}$ and VWC$_{\text{max}}$ are the minimum and maximum VWC during the measurement period in each year, respectively.

Sap-flow analysis was conducted using mean data from five sensors. Sap flow per leaf area (J_s) was calculated according to

$$J_s = \left(\sum_{i=1}^{n} \frac{E_i}{A_i} \right) / n,$$

where J_s is the sap flow per leaf area (kg m$^{-2}$ h$^{-1}$ or kg m$^{-2}$ d$^{-1}$), E is the measured sap flow of a stem (g h$^{-1}$), A_i is the leaf area of the sap-flow stem, and n is the number of stems sampled (e.g., $n=5$).

Transpiration per ground area (T_r) was estimated in this study according to:

$$T_r = \left(\sum_{i=1}^{n} J_s \cdot \text{LAI} \right) / n,$$

where T_r is transpiration per ground area (mm d$^{-1}$).

Linear and non-linear regressions were used to analyze abiotic control on sap flow. In order to minimize the effects of different phenophases and rainfall, we only used data from the mid-growing season, non-rainy days, and daytime hours from 08:00 to 20:00, i.e., from 1 June to 31 August, with hourly shortwave radiation greater than 10 W m$^{-2}$. Relations between mean sap flow at specific times over a period of 08:00–20:00 and corresponding environmental factors from 1 June to 31 August were derived from linear regression ($p<0.05$; Fig. 3). Regression slopes were used as indicators of sap-flow sensitivity (degree of response) to the various environmental variables (see Zha et al., 2013). All statistical analyses were performed with SPSS version 17.0 for Windows software (SPSS Inc., USA). Significance level was set at 0.05.

3 Results

3.1 Seasonal variations in environmental factors and sap flow

The range of daily means (24 h mean) for R_s, T, VPD, and VWC during the 2013 growing season (May–September) were 31.1–364.9 W m$^{-2}$, 8.8–24.4 °C, 0.05–2.3 kPa, and 0.06–0.17 m3 m$^{-3}$ (Fig. 2a–d), respectively, annual means being 224.8 W m$^{-2}$, 17.7 °C, 1.03 kPa, and 0.08 m3 m$^{-3}$. The corresponding range of daily means for 2014 were 31.0–369.9 W m$^{-2}$, 7.1–25.8 °C, 0.08–2.5 kPa, and 0.06–0.16 m3 m$^{-3}$ (Fig. 2a–d), respectively, annual means being 234.9 W m$^{-2}$, 17.2 °C, 1.05 kPa, and 0.09 m3 m$^{-3}$.

Total precipitation and number of days with rainfall events during the 2013 measurement period (257.2 and 46 days) were about 5.6 and 9.8 % lower than those during 2014 (272.4 mm and 51 days; Fig. 2d), respectively. More irregular rainfall events occurred in 2013 than in 2014, with 45.2 % of rainfall falling in July and 8.8 % in August.

Drought mainly occurred in May, June, and August of 2013 and in May and June of 2014 (shaded sections in Fig. 2d, e). Both years had dry springs. Over a 1-month period of summer drought occurred in 2013.

The range of daily J_s during the growing season was 0.01–4.36 kg m$^{-2}$ d$^{-1}$ in 2013 and 0.01–2.91 kg m$^{-2}$ d$^{-1}$ in 2014 (Fig. 2f), with annual means of 0.89 kg m$^{-2}$ d$^{-1}$ in 2013 and 1.31 kg m$^{-2}$ d$^{-1}$ in 2014. Mean daily T_r over the growing season of 2013 was 32 % lower than that of 2014. Mean daily T_r were 0.05 and 0.07 mm d$^{-1}$ over the growing season of 2013 and 2014 (Fig. 2f), respectively, being 34 % lower in 2013 than in 2014. The total T_r over the growing season (1 May–30 September) of 2013 and 2014 were 7.3 and 10.9 mm, respectively. Seasonal fluctuations in J_s and T_r corresponded with seasonal patterns in VWC (Fig. 2d, f). Daily mean J_s and T_r decreased or remained nearly constant during dry-soil periods (Fig. 2d, f), with the lowest J_s and T_r observed in spring and mid-summer (August) of 2013.
3.2 Sap-flow response to environmental factors

In summer, \(J_s \) increased with increasing VWC, \(R_s \), \(T \), and VPD (Figs. 2d, f, and 3). Sap flow increased more rapidly with increases in \(R_s \), \(T \), and VPD under high VWC (i.e., VWC > 0.1 \(\text{m}^3 \text{m}^{-3} \) in both 2013 and 2014; Fig. 4) compared with periods with lower VWC (i.e., VWC < 0.1 \(\text{m}^3 \text{m}^{-3} \) in both 2013 and 2014; Fig. 4). Sap flow was more sensitive to \(R_s \), \(T \), and VPD under high VWC (Fig. 4), which coincided with a steeper regression slope under high VWC conditions. Sensitivity of \(J_s \) to environmental variables (in particular, \(R_s \), \(T \), VPD, and VWC) varied depending on time of day (Fig. 5). Regression slopes for the relations of \(J_s - R_s \), \(J_s - T \), and \(J_s - \text{VPD} \) were greater in the morning before 11:00, and lower during mid-day and early afternoon (12:00–16:00). In contrast, regression slopes of the relation of \(J_s - \text{VWC} \) were lower in the morning (Fig. 5), increasing thereafter, peaking at \(\sim 13:00 \), and subsequently decreasing in late afternoon. Regression slopes of the response of \(J_s \) to \(R_s \), \(T \), and VPD in 2014 were steeper than those in 2013.

3.3 Diurnal changes and hysteresis between sap flow and environmental factors

Diurnal patterns of \(J_s \) were similar in both years (Fig. 6), initiating at 07:00 and increasing thereafter, peaking before noon (12:00), and subsequently decreasing thereafter and remaining near zero from 20:00 to 06:00. Diurnal changes in \(g_s \) were similar to \(J_s \), but peaking about 2 and 1 h earlier than \(J_s \) in July and August, respectively (Fig. 6).

There were pronounced time lags between \(J_s \) and \(R_s \) over the 2 years (Fig. 7). \(J_s \) peaking earlier than \(R_s \) and, thus, earlier than either VPD or \(T \). These time lags differed seasonally. For example, mean time lag between \(J_s \) and \(R_s \) was 2 h during July, 5 h during May, and 3 h during June, August, and September of 2013. However, the time lags in 2014 were generally shorter than those observed in 2013 (Table 2).

Clockwise hysteresis loops between \(J_s \) and \(R_s \) during the growing period were observed (Fig. 7). As \(R_s \) increased in the morning, \(J_s \) increased until it peaked at \(\sim 10:00 \). Sap flow
declined with decreasing R_s during the afternoon. Sap flow (J_s) was higher in the morning than in the afternoon.

Diurnal time lag in the relation of J_s-R_s were influenced by VWC (Figs. 8, 9). For example, J_s peaked about 2 h earlier than R_s on days with low VWC (Fig. 8a), 1 h earlier than R_s on days with moderate VWC (Fig. 8b), and at the same time as R_s on days with high VWC (Fig. 8c). Lag hours between J_s and R_s over the growing season were negatively and linearly related to VWC (Fig. 9: lag (h) = $-133.5 \times$ VWC + 12.24, $R^2 = 0.41$). The effect of VWC on time lags between J_s and R_s was smaller in 2014, with evenly distributed rainfall during the growing season, than in 2013, with a pronounced summer drought (Fig. 9). Variables g_s and Ω showed a significantly increasing trend with increasing VWC in 2013 and 2014 (Fig. 10). This trend was more obvious in the dry year of 2013 than in 2014.

4 Discussion and conclusions

4.1 Sap-flow response to environmental factors

Drought tolerance of some plants may be related to lower overall sensitivity of plant physiological attributes to environmental stress and/or stomatal regulation (Y. Huang et al., 2011; Naithani et al., 2012). In this study, steep regression slopes between J_s and the environmental variables (R_s, VPD, and T) in the morning indicated that sap flow was less sensitive to variations in R_s, VPD, and T during the drier and hotter part of the day (Fig. 5). The lower sensitivity combined with lower stomatal conductances led to lower sap flow, and, thus, lower transpiration (water consumption) during hot mid-day summer hours, pointing to a water-conservation strategy in plant acclimation during dry and hot conditions. When R_s peaked during mid-day (13:00–14:00) in summer, there was often insufficient soil water to meet the atmospheric demand, causing g_s to be limited by available soil moisture and making J_s more responsive to VWC at noon, but less responsive to R_s and T. Similarly, sap flow in *Hedysarum mongolicum* and some other shrubs in a nearby region were positively correlated with VWC at noon (Qian et al., 2015). For instance, sap flow in *Picea crassifolia* peaked at noon (12:00 and 14:00) and then decreased, heightening by increasing R_s, T, and VPD, when $R_s < 800 \text{ W m}^{-2}$, $T > 18.0^\circ \text{C}$, and VPD < 1.4 kPa (Chang et al., 2014); sap flow in *Caragana korshinskii* was significantly lower during the stress period, its conductance decreasing linearly after the wilting point (She et al., 2013). The fact that J_s was less sensitive to meteorological variables when VWC < 0.10 m3 m$^{-3}$, highlights the water-conservation strategy taken by drought-afflicted *Artemisia ordosica*. The positive linear relationship between g_s and VWC in this study further supports this conclusion.

Precipitation, being the most important source of soil moisture and, thus, VWC, affected transpiration directly. Frequent small rainfall events (<5 mm) are crucially important to the survival and growth of desert plants (Zhao and Liu, 2010). Variations in J_s were clearly associated with the intermittent supply of water to the soil during rainfall events (see Fig. 2d, f). Reduced J_s during rainy days can be largely explained by a reduction in incident R_s and liquid water-induced saturation of the leaf surface, which led to a decrease in leaf turgor and stomatal closure. After each rainfall event, J_s increased quickly when soil moisture was replenished. Schwinning and Sala (2004) have previously shown that VWC contributed the most to the post-rainfall response in plant transpiration at similar sites. The study shows that *Artemisia ordosica* responded differently to wet and dry conditions. In the mid-growing season, high J_s in July was related to rainfall-fed soil moisture, which increased the rate of transpiration. However, dry soil conditions combined with high T and R_s led to a reduction in J_s in August of 2013 (Fig. 2). In some deep-rooting desert shrubs, groundwater may replenish water lost by transpiration (Yin et al., 2014). *Artemisia ordosica* roots are generally distributed in the upper 60 cm of the soil (Zhao et al., 2010), and as a result the plant usually depends on water directly supplied by precipitation. This is because groundwater levels in drylands can often be below the rooting zone of many shrub species, typ-
Figure 4. Sap flow per leaf area \((J_s) \) in non-rainy, daytime hours during the mid-growing season of 1 June to 31 August for both 2013 and 2014 as a function of shortwave radiation \((R_s) \), air temperature \((T) \), and vapor pressure deficit (VPD) under high volumetric soil water content \((\text{VWC} > 0.10 \text{ m}^{-3}) \) both in 2013 and 2014 and low VWC \((< 0.10 \text{ m}^{-3}) \) 2013 and 2014). \(J_s \) is given as binned averages according to \(R_s, T, \) and VPD based on increments of 100 W m\(^{-2} \), 1 °C, and 0.2 kPa, respectively. Bars indicate standard error.

Figure 5. Regression slopes of linear fits between sap flow per leaf area \((J_s) \) in non-rainy days and shortwave radiation \((R_s) \), vapor pressure deficit (VPD), air temperature \((T) \), and volumetric soil water content (VWC) between 08:00 and 20:00 during the mid-growing season of 1 June to 31 August for 2013 and 2014.

Diurnal patterns in \(J_s \) corresponded with those of \(R_s \) from sunrise until diverging later in the day (Fig. 7), suggesting that \(R_s \) was a primary controlling factor of diurnal \(J_s \). As an initial energy source, \(R_s \) also can force \(T \) and VPD to increase, causing a phase difference in time lags among the relations of \(J_s-R_s \), \(J_s-T \), and \(J_s-\text{VPD} \).

The hysteresis effect reflects plant acclimation to water limitations, due to stomatal conductance being inherently dependent on plant hydrodynamics (Matheny et al., 2014). The large \(g_s \) in the morning promoted higher rates of transpiration (Figs. 6, 7), while lower \(g_s \) in the afternoon reduced transpiration. Therefore, diurnal curves (hysteresis) were mainly caused by a \(g_s \)-induced hydraulic process (Fig. 7). The finding that hysteresis varied seasonally, decreasing with increasing VWC, further reflects the acclimation to water limitation causing \(J_s \) to peak in advance of the environmental factors. At our site, dry soils accompanied with high VPD in summer, led to a decreased \(g_s \) and a more significant control of the stomata on \(J_s \) relative to the environmental factors.
Table 2. Mean monthly diurnal cycles of sap flow (J_s) response to shortwave radiation (R_s), air temperature (T), and water vapor pressure deficit (VPD), including lag times (h) as a function of R_s, T, and VPD.

<table>
<thead>
<tr>
<th>Relationship</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_s–R_s</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>J_s–T</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>J_s–VPD</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 6. Mean monthly diurnal changes in sap flow per leaf area (J_s) and stomatal conductance (g_s) in *Artemisia ordosica* during the growing season (May–September) for both 2013 and 2014. Each point is given as the mean at specific times during each month.

Figure 7. Seasonal variation in hysteresis loops between sap flow per leaf area (J_s) and shortwave radiation (R_s) using normalized plots for both 2013 and 2014. The y axis represents the proportion of maximum J_s (dimensionless), and the x axis represents the proportion of maximum R_s (dimensionless). The curved arrows indicate the clockwise direction of response during the day.

The result that g_s increased with increasing VWC (Fig. 10a), along with the synchronization of J_s and g_s, suggests that J_s is more sensitive to g_s in low VWC and less so to R_s. Due to the incidence of small rainfall events in drylands, soil water supplied by rainfall pulses was largely insufficient to meet the transpiration demand under high mid-day R_s, resulting in clockwise loops. Lower Ω values (< 0.4) at our site also support the idea that g_s has a greater control on transpiration than R_s under situations of water limitation (Fig. 10).

Altogether, stomatal control on the diurnal evolution of J_s by reducing g_s combined with lower sensitivity to meteorological variables during the mid-day dry hours help to reduce water consumption in *Artemisia ordosica*. Seasonally, plant-moderated reductions in g_s and increased hystere-
Figure 8. Sap flow per leaf area (J_s) and shortwave radiation (R_s) over three consecutive days in 2013, i.e., (a) under low volumetric soil water content (VWC) and high vapor pressure deficit (VPD; DOY 153–155, VWC = 0.064 m3 m$^{-3}$, REW = 0.025, VPD = 2.11 kPa), (b) moderate VWC and VPD (DOY 212–214, VWC = 0.092 m3 m$^{-3}$, REW = 0.292, VPD = 1.72 kPa), and (c) high VWC and low VPD (DOY 192–194, VWC = 0.152 m3 m$^{-3}$, REW = 0.865, VPD = 0.46 kPa); REW is the relative extractable soil water and DOY is the ordinal day of the year. VWC, REW, and VPD give the 3-day mean value.

Figure 9. Time lag between sap flow per leaf area (J_s) and shortwave radiation (R_s) in relation to volumetric soil water content (VWC). Hourly data in non-rainy days during the mid-growing season of 1 June to 31 August 2013 and 2014. The lag hours were calculated by a cross-correlation analysis using a 3-day moving window with a 1-day time step. Rainy days were excluded. The solid line is based on an exponential regression ($p < 0.05$).

sis, leads to reduced J_s and acclimation to drought conditions. It is suggested here that water limitation invokes a water-conservation strategy in *Artemisia ordosica*. Contrary to our findings, counterclockwise hysteresis has been observed to occur between J_s and R_s in tropical and temperate forests (Meinzer et al., 1997; O’Brien et al., 2004; Zeppel et al., 2004), which is reported to be consistent with the capacitance of the particular soil–plant–atmosphere system being considered. Unlike short-statured vegetation, it usually takes more time for water to move up and expand vascular elements in tree stems during the transition from night to day.

Figure 10. Relationship between volumetric soil water content (VWC) and (a) stomatal conductance (g_s) in *Artemisia ordosica*, and (b) decoupling coefficient (Ω) for 2013 and 2014. Hourly values are given as binned averages based on a VWC-increment of 0.005 m3 m$^{-3}$. Bars indicate standard error. Only statistically significant regressions (with p values < 0.05) are shown.
4.3 Conclusions

The relative influence of R_e, T, and VPD on J_s in Artemisia ordosica was modified by soil water, indicating J_s's lessened sensitivity to the environmental variables during dry periods. Sap flow was constrained by soil water deficits, causing J_s to peak several hours prior to the peaking of R_e. Diurnal hysteresis between J_s and R_e varied seasonally and was mainly controlled by hydraulic stresses. Soil moisture controlled sap-flow response in Artemisia ordosica to meteorological factors. This species escaped and acclimated to water limitations by invoking a water-conservation strategy through the hysteresis effect and stomatal regulation. Our findings add to our understanding of acclimation in desert-shrub species under stress of dehydration. The information advanced here can assist in modeling desert-shrub-ecosystem functioning under changing climatic conditions.

Data availability. Data of environmental factors and sap-flow rate in 2013 and 2014 and data of stomatal conductance (g_s) in 2013 and 2014 are available from the following link: http://pan.baidu.com/s/1sl8wgvz.

Author contributions. DQ and TZ contributed equally to the design and implementation of the field experiment, data collection and analysis, and writing the first draft of the manuscript. XJ gave helpful suggestions concerning the analysis of the field data and contributed to the scientific revision and editing of the manuscript. CP-AB and HP contributed to the scientific revision and editing of the manuscript. BW, WF, and YT were involved in the implementation of the experiment and in the revision of the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Special issue statement. This article is part of the special issue “Ecosystem processes and functioning across current and future dryness gradients in arid and semi-arid lands”. It is not associated with a conference.

Acknowledgements. This research was financially supported by grants from the National Natural Science Foundation of China (NSFC no. 31670710, 31670708, 31361130340, 31270755) and the Academy of Finland (project no. 14921). Xin Jia and Wei Feng are also grateful for financial support from the Fundamental Research Funds for the Central Universities (project no. 2015ZCQ-SB-02). This work is related to the Finnish–Chinese collaborative research project EXTREME (2013–2016), between Beijing Forestry University (team led by Tianshan Zha) and the University of Eastern Finland (team led by Heli Peltola), and the US–China Carbon Consortium (USCCC). We thank Ben Wang, Sijing Li, Qiang Yang, and others for their assistance in the field.

Edited by: Paul Stoy
Reviewed by: two anonymous referees

References

Dynamax: Dynagage® Installation and Operation Manual, Dynamax, Houston, TX, 2005.

Ennajeh, M., Tounekti, T., and Vadel, A. M.: Water relations and droughtinduced embolism in olive (Olea europaea) varieties

