Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 14, issue 17
Biogeosciences, 14, 3883–3897, 2017
https://doi.org/10.5194/bg-14-3883-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 14, 3883–3897, 2017
https://doi.org/10.5194/bg-14-3883-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Sep 2017

Research article | 01 Sep 2017

Modelled estimates of spatial variability of iron stress in the Atlantic sector of the Southern Ocean

Thomas J. Ryan-Keogh et al.
Related authors  
Seasonal development of iron limitation in the sub-Antarctic zone
Thomas J. Ryan-Keogh, Sandy J. Thomalla, Thato N. Mtshali, Natasha R. van Horsten, and Hazel J. Little
Biogeosciences, 15, 4647–4660, https://doi.org/10.5194/bg-15-4647-2018,https://doi.org/10.5194/bg-15-4647-2018, 2018
Short summary
Related subject area  
Biogeochemistry: Open Ocean
Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?
Federico Baltar and Gerhard J. Herndl
Biogeosciences, 16, 3793–3799, https://doi.org/10.5194/bg-16-3793-2019,https://doi.org/10.5194/bg-16-3793-2019, 2019
Short summary
Sensitivity of ocean biogeochemistry to the iron supply from the Antarctic Ice Sheet explored with a biogeochemical model
Renaud Person, Olivier Aumont, Gurvan Madec, Martin Vancoppenolle, Laurent Bopp, and Nacho Merino
Biogeosciences, 16, 3583–3603, https://doi.org/10.5194/bg-16-3583-2019,https://doi.org/10.5194/bg-16-3583-2019, 2019
Short summary
Isotopic fractionation of carbon during uptake by phytoplankton across the South Atlantic subtropical convergence
Robyn E. Tuerena, Raja S. Ganeshram, Matthew P. Humphreys, Thomas J. Browning, Heather Bouman, and Alexander P. Piotrowski
Biogeosciences, 16, 3621–3635, https://doi.org/10.5194/bg-16-3621-2019,https://doi.org/10.5194/bg-16-3621-2019, 2019
Short summary
The effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a global biogeochemical model
Daniela Niemeyer, Iris Kriest, and Andreas Oschlies
Biogeosciences, 16, 3095–3111, https://doi.org/10.5194/bg-16-3095-2019,https://doi.org/10.5194/bg-16-3095-2019, 2019
Short summary
Sensitivity of atmospheric CO2 to regional variability in particulate organic matter remineralization depths
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019,https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Cited articles  
Baker, N. R., Oxborough, K., Lawson, T., and Morrison, J. I. L.: High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves, J. Exp. Bot., 52, 615–621, https://doi.org/10.1093/jxb/52.356.615, 2001.
Behrenfeld, M. J. and Falkowski, P. G.: A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42, 1479–1491, https://doi.org/10.4319/lo.1997.42.7.1479, 1997a.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997b.
Boyd, P. W. and Doney, S. C.: Modelling regional responses by marine pelagic ecosystems to global climate change, Geophys. Res. Lett., 29, 53-1–53-4, https://doi.org/10.1029/2001GL014130, 2002.
Publications Copernicus
Download
Short summary
Primary production in the Southern Ocean is a key contributor to mitigating global anthropogenic carbon dioxide; however, the controlling mechanisms are poorly understood. A series of experiments were performed to look at whether the rates of primary production are limited by the biogeochemically important micronutrient iron. The results demonstrate that any global climate models that do not take into account the effect of iron availability could underestimate primary production by up to 80 %.
Primary production in the Southern Ocean is a key contributor to mitigating global anthropogenic...
Citation