Supplement of

Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

Yit Arn Teh et al.

Correspondence to: Yit Arn Teh (yateh@abdn.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.
Figure Captions

Figure S1. Scatter plot of soil temperature against diffusive CH$_4$ flux. The data presented here are not transformed. Statistical analysis was performed on Box-Cox transformed data ($P < 0.004481, r^2 = 0.0356, n = 986$).

Figure S2. Scatter plot of water table depth against diffusive CH$_4$ flux. The data presented here are not transformed. Statistical analysis was performed on Box-Cox transformed data ($P < 0.000097, r^2 = 0.75, n = 987$).

Figure S3. Scatter plot of dissolved oxygen against diffusive N$_2$O flux. The data presented here are not transformed. Statistical analysis was performed on Box-Cox transformed data ($P > 0.9498, r^2 = 0.000003638, n = 1091$).

Figure S4. Scatter plot of electrical conductivity against diffusive N$_2$O flux. The data presented here are not transformed. Statistical analysis was performed on Box-Cox transformed data ($P < 0.0498, r^2 = 0.003528, n = 1087$).
Figure S2

[Graph showing the relationship between diffusive CH₄ flux (mg CH₄-C m⁻² d⁻¹) and water table depth (cm)].
Figure S3

Difffusive N_2O Flux (μg NN_2 $\text{m}^{-2} \text{ d}^{-1}$) vs. Pore water Dissolved Oxygen the 0-15 cm soil depth (%)
Figure S4

[Graph showing the relationship between diffusive NO$_2$ flux (µg N$_2$O·m$^{-2}$·d$^{-1}$) and pore water electrical conductivity in the 0-15 cm soil depth (µS·m$^{-1}$).]