
Biogeosciences, 14, 3309–3320, 2017
https://doi.org/10.5194/bg-14-3309-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Bivariate return periods of temperature and precipitation explain
a large fraction of European crop yields
Jakob Zscheischler, Rene Orth, and Sonia I. Seneviratne
Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland

Correspondence to: Jakob Zscheischler (jakob.zscheischler@env.ethz.ch)

Received: 27 January 2017 – Discussion started: 2 February 2017
Revised: 13 June 2017 – Accepted: 14 June 2017 – Published: 11 July 2017

Abstract. Crops are vital for human society. Crop yields
vary with climate and it is important to understand how cli-
mate and crop yields are linked to ensure future food secu-
rity. Temperature and precipitation are among the key driving
factors of crop yield variability. Previous studies have inves-
tigated mostly linear relationships between temperature and
precipitation and crop yield variability. Other research has
highlighted the adverse impacts of climate extremes, such as
drought and heat waves, on crop yields. Impacts are, how-
ever, often non-linearly related to multivariate climate con-
ditions. Here we derive bivariate return periods of climate
conditions as indicators for climate variability along differ-
ent temperature–precipitation gradients. We show that in Eu-
rope, linear models based on bivariate return periods of spe-
cific climate conditions explain on average significantly more
crop yield variability (42 %) than models relying directly on
temperature and precipitation as predictors (36 %). Our re-
sults demonstrate that most often crop yields increase along
a gradient from hot and dry to cold and wet conditions, with
lower yields associated with hot and dry periods. The major-
ity of crops are most sensitive to climate conditions in sum-
mer and to maximum temperatures. The use of bivariate re-
turn periods allows the integration of non-linear impacts into
climate–crop yield analysis. This offers new avenues to study
the link between climate and crop yield variability and sug-
gests that they are possibly more strongly related than what
is inferred from conventional linear models.

1 Introduction

Agriculture is essential to the well-being of humans and is
directly affected by changes in climate (Lobell et al., 2011;
Porter et al., 2014). Continuing climate change will likely in-
crease the pressure on agriculture in the future, with adverse
impacts on food security (Porter et al., 2014; Wheeler and
Von Braun, 2013; Rosenzweig et al., 2014). Understanding
how crop yields vary with climate may help to ensure fu-
ture food security through increased predictability of yields
and adequate adaptation measures. Trying to keep variabil-
ity in yields low is a key objective as lower yield variability
leads to more stable farmer incomes (Reidsma et al., 2010)
and food supply (Slingo et al., 2005). Biological crop mod-
els have existed at least since the 1970s (Loomis et al., 1979).
However, such models are limited in their ability to quantify
the impact of climate variability on crop yields over larger
scales. For this purpose statistical models are applied. Glob-
ally, variations in precipitation and temperature account for
about a third of the observed yield variability (Lobell and
Field, 2007; Ray et al., 2015). Due to their sensitivity to
climate, crop yields are also strongly susceptible to climate
extremes. In particular, disastrous droughts and heat waves
often severely impact crop yields, reducing national cereal
production by up to 9–10 % (Lesk et al., 2016). How climate
extremes impact crop production, however, varies across lo-
cations. Crops in the northern latitudes, for instance, might
thrive under very warm conditions. In addition, impacts of
climate extremes on vegetation strongly depends on when
the climate extreme occurs and in which developing stage the
underlying vegetation is (De Boeck et al., 2011; Frank et al.,
2015; Sippel et al., 2016). Because crops are often strongly
adapted to specific climate conditions and co-vary with lo-
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cal climate (Osborne et al., 2009), it can be expected that the
timing of climate anomalies is even more crucial for crops.

Crop yields can respond non-linearly to changes in climate
conditions and extremes (Porter and Semenov, 2005). Non-
linear impacts of extremely dry and hot conditions on ter-
restrial carbon fluxes have been previously shown. On the
global scale, the impacts of concurrent dry and hot periods
on carbon fluxes exceed the sum of impacts from either hot
or dry conditions (Zscheischler et al., 2014a). Studies in-
vestigating the variability in crop yields with climate usu-
ally rely on linear models (Osborne and Wheeler, 2013; Ray
et al., 2015), though sometimes non-linear transformations
of climate variables are used as predictors (Ray et al., 2015).
Building more complex non-linear models is often not fea-
sible because crop yield time series are too short (mostly
not more than 60 years). However, climate extremes might
have disproportionately large impacts on crops (Lesk et al.,
2016). Due to the sensitivity of crop yields to both tempera-
ture and precipitation (Ray et al., 2015) and extremes therein
(Lesk et al., 2016), a variable incorporating the degree of ex-
tremeness of both variables at the same time might be more
robustly related to crop yields. In the univariate setting, the
magnitude of an extreme event is sometimes approximated
by its return period. Here we use this analogy and derive bi-
variate return periods of temperature and precipitation that
we then relate to crop yields. We explore how well bivariate
return periods of temperature and precipitation are linked to
crop yields.

Multivariate return periods have been studied increasingly
in the recent past, mostly in the field of hydrology, for in-
stance to study floods (Grimaldi and Serinaldi, 2006; Sal-
vadori et al., 2011, 2013) and droughts (Shiau and Modarres,
2009; Wong et al., 2009; De Michele et al., 2013). The in-
troduction of the concept of copulas into meteorology and
climate research has boosted the usage and modelling of
multivariate distributions (Schoelzel and Friederichs, 2008).
A copula is a multivariate probability distribution for which
the marginal probability distribution of each variable is uni-
form. Copulas can be used to describe the dependence be-
tween random variables. They can greatly simplify calcula-
tions involving multivariate distributions and have led to a
suite of definitions of multivariate return periods (Salvadori
and De Michele, 2004; Serinaldi, 2015). Most studies so far
have focused on return periods of droughts and floods in
a multivariate setting. AghaKouchak et al. (2014) were prob-
ably the first to compute return periods of events involving
both precipitation and temperature.

Generally, there is no unique way to define multivariate re-
turn periods (Serinaldi, 2015). As there is no natural ordering
in higher dimensional spaces, one has to decide first in what
direction one wants to look. For instance in our case, we can
compute return periods of hot and dry events, hot and wet
events, cold and dry events, or cold and wet events. Further-
more, we have to decide how to set a threshold, which will
ultimately result in return periods of specific events, to com-

pute threshold exceedances. Various suggestions have been
proposed in the recent years (Serinaldi, 2015). Here we use
the definition motivated by the notion of critical regions (Sal-
vadori et al., 2011), whose return periods can be computed
using so-called survival functions and survival copulas (Sal-
vadori et al., 2013). The concept of critical regions has re-
cently been mathematically formalized well via the notions
of hazard scenarios and upper sets, providing a consistent
mathematical framework. The interested reader is referred
to Salvadori et al. (2016). A survival function is the com-
plementary cumulative distribution function, i.e. for a distri-
bution function F(x)= Pr(X ≤ x) the survival function, de-
noted by F , is given by F(x)= Pr(X > x). Survival copulas
are copulas based on survival functions.

Critical regions are separated from noncritical regions
by a so-called critical layer {(x,y) ∈ R2

: F(x,y)= Pr(X >
x,Y > y)= t}, in which all points (x,y) ∈ R2 have the same
probability F(x,y)= t in the joint survival distribution F .
The critical region is then defined as R

<

t = {(x,y) ∈ R
2
:

F(x,y) < t} (De Michele et al., 2013). The return period
(RP) of an event can be defined as the inverse of the prob-
ability of falling into the critical region:

RP=
µ

Pr((X,Y ) ∈ R
<

t )
, (1)

in which µ is the average inter-arrival time of events (1 year
in our case). As we will see, from this definition it follows
that events in which only one variable is extreme (e.g. ei-
ther extreme heat but no drought, or extreme drought but
no heat) and events in which both variables are moderately
extreme (e.g. moderate heat and drought) may have similar
return periods. Crop yields vary with climate, most impor-
tantly temperature and precipitation (Ray et al., 2015). If we
assume that temperature and precipitation at potentially dif-
ferent time periods are of similar relevance for crop yields,
a relationship between bivariate return periods of precipita-
tion and temperature can be expected.

AghaKouchak et al. (2014) applied the concept of sur-
vival copulas with precipitation and temperature data from
California to calculate return periods of critical regions (Sal-
vadori et al., 2013) and estimated a return period of 200 years
for the very hot and dry year 2014. Here we apply this ap-
proach to climate data in Europe and investigate relationships
between bivariate return periods of combinations of temper-
ature and precipitation with crop yield variability. By look-
ing in all directions in the temperature–precipitation space,
we assess whether an intensification along a certain direc-
tion (dry and hot, dry and wet, etc.) leads to an increase or
decrease in crop yields. By computing return periods for dif-
ferent combinations of months (e.g. temperature in spring,
precipitation in June and July), we estimate which combi-
nations of months and climate conditions mostly affect crop
yields. We compare this analysis with linear models fitted to
the two predictors precipitation and temperature.
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2 Methods

2.1 Data

All analyses are focused on Europe. We obtained annual Eu-
rostat national crop yield statistics for 19 European coun-
tries for the period 1955–2015 from the European Commis-
sion (http://epp.eurostat.ec.europa.eu). Due to their impor-
tance for the European crop production (Leff et al., 2004)
and good spatiotemporal coverage, we selected the follow-
ing crops (following the official Eurostat terminology): ce-
reals (excluding rice), wheat (including spelt), maize (grain
maize and corn-cob mix), potatoes (including early potatoes
and seed potatoes), and sugar beet (excluding seed). Wheat
does include winter and spring varieties. Sugar beet is sown
in spring and harvested in autumn in Europe. In the Eurostat
database, yield is reported as the amount of dry matter suit-
able for consumption (Moors et al., 2010). Not every country
grows every crop every year; accordingly, some time series
contain missing values. In total we collected 3552 crop yield
years distributed over 19 countries and five crops. Most data
were available for cereals (781 crop yield years) and pota-
toes (766 crop yield years) followed by wheat (734), sugar
beet (672), and maize (599).

We further used daily minimum (Tmin), mean (T ) and
maximum temperature (Tmax), and precipitation (P ) data
from E-OBS (Haylock et al., 2008) at 0.25◦ spatial resolu-
tion and computed spatial averages for the 19 countries for
which we have collected crop yields. Because crop area po-
tentially changed over time, for each country we averaged
climate data over the entire country. In this way we investi-
gate how climate variability on the country scale is related to
annual crop yields.

2.2 Data preprocessing

Long-term trends in crop yields are mostly caused by techni-
cal progress such as breeding and changes in land use policy
and management practices. Various corrections are typically
used to adjust for this effect. Often the difference in values
from one year to the next (Lobell and Field, 2007), or linear
or quadratic detrending (Ray et al., 2015), is applied to obtain
anomalies of crop yields independent of long-term trends,
which are more closely related to climate variability. Here we
rely on a different, more adaptive approach (Wu et al., 2014).
We fitted cubic smoothing splines to each crop yield time se-
ries to capture the long-term trend. The original time series
was then divided by this trend to obtain a dimensionless in-
dex. Values greater than 1 indicate positive yield anomalies,
whereas values below 1 indicate negative yield anomalies.
The cubic smoothing splines were fitted with a frequency
cut-off of 50 % at two-thirds of the time series length to
remove low-frequency variability. This procedure is analo-
gous to standard dendrochronological procedures, in which
the aim is to filter out low-frequency trends related to tree

geometry and not to climate (Babst et al., 2012; Cook and
Peters, 1981). We used the R package dplR (Bunn, 2008) for
these computations and denote the resulting yield anomalies
using Y . We used the same normalization to subtract long-
term trends in climate data (Tmin, T , Tmax, and P ) for each
country, similar to Wu et al. (2014). The resulting indices
preserve high-frequency (i.e. inter-annual) variability, but not
the trends or low-frequency signals (Babst et al., 2012; Cook
and Peters, 1997).

We averaged normalized climate variables over differ-
ent time periods to assess the sensitivity of crops towards
different climate variables and different time periods. In
particular, we computed seasonal and 2-month averages
during the growing season and averaged climate variables
(Tmin, T , Tmax, and P ) over the months March–August,
March–May, June–August, March–April, April–May, May–
June, June–July, July–August, and August–September. We
selected these periods to cover seasonal and bimonthly cli-
mate variations over the time period relevant for the crops.
We tested for autocorrelation in the yearly time series of
temperature and precipitation averaged over these different
timescales. Of the temperature time series, 8.8 % and of the
precipitation time series, 4.4 % is significantly autocorrelated
for lag 1 at the 5 % level. Because our focus is on bivari-
ate distributions, we conclude that autocorrelation does not
have a significant effect on our conclusions. Subsequently,
we computed bivariate return periods for P and all variants
of T for all combinations of averaging periods as described
below (Sect. 2.3). All our analyses were done in the R pro-
gramming language version 3.1.2 (R Core Team, 2014).

2.3 Bivariate return periods

The computation of bivariate return periods was done based
on copulas similar to AghaKouchak et al. (2014). The joint
distribution of the two variables X (e.g. temperature) and Y
(e.g. precipitation) can be written as (Sklar, 1959; Salvadori
and De Michele, 2004)

F(x,y)= Pr(X ≤ x,Y ≤ y)= C(FX(x),FY (y)), (2)

with the marginal cumulative distribution functions FX(x)=
Pr(X ≤ x) and FY (y)= Pr(Y ≤ y) and a copula C. Cop-
ulas are multivariate probability distributions with uniform
marginal distributions designed to model the dependence be-
tween multiple variables (Nelsen, 1999). As we are interested
in exceedance probabilities, we rely on survival functions.
The so-called joint survival distribution F(x,y)= Pr(X >
x,Y > y) can be obtained using the concept of survival cop-
ulas (Salvadori et al., 2011, 2013):

F(x,y)= Ĉ(FX(x),F Y (y)), (3)

with marginal survival functions FX = 1−FX and F Y =
1−FY and Ĉ the survival copula. For any given (x,y) ∈ R2,
there exists a unique survival critical layer at which the set
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Figure 1. Maize in Germany. (a) Maximum temperature anomalies averaged over July and August vs. precipitation anomalies averaged
over June and July. Dots are coloured according to maize yield anomalies if yield data were available and are grey otherwise. Cold and wet
conditions are on the lower left. Bivariate return periods increase from the lower left to the upper right as indicated by the curves. Straight
lines indicate levels of equal yield anomalies as predicted by the linear model MTP. (b) Maize yield anomaly vs. bivariate return periods.
The line indicates the best linear fit with R2

= 0.72. (c) Linear model using predictors from (a) (MTP). The adjusted R2 is 0.62. The line
denotes the 1 : 1 diagonal.

of realizations of X and Y share the same probability t ∈
(0,1) (De Michele et al., 2013; AghaKouchak et al., 2014):

L
F

t = {(x,y) ∈ R
2
: F(x,y)= t}. The survival critical layer

partitions R2 into a “safe” region and a “critical” region:
R
<

t = {(x,y) ∈ R
2
: F(x,y) < t}. A bivariate RP can now be

defined as the probability of falling inside the critical region
R
<

t (Salvadori et al., 2013; De Michele et al., 2013) through

RP=
µ

1−K(t)
, (4)

in whichK is the Kendall’s survival function associated with
F , defined as

K(t)= Pr(F (X,Y )≥ t)= Pr(Ĉ(FX(x),F Y (y))≥ t) . (5)

There exist analytical expressions for Kendall’s survival
function if the copula is Archimedean (Salvadori and
De Michele, 2004). Otherwise, it can be obtained through

simulations (Salvadori et al., 2011). Note that in our appli-
cation the inter-arrival time µ= 1 year because we consider
yearly values of climate variables averaged over a specific
time period (Sect. 2.2). For a given temperature–precipitation
couple (x,y) we can now (i) determine the survival critical

layer L
F

t associated with t = F(x,y)= Ĉ(FX(x),F Y (y)),
(ii) compute the probability of an event being at least as ex-
treme as (x,y) (i.e. falling inside the critical region defined
by t) by p = 1−K(t), and finally (iii) compute return periods
via Eq. (4).

2.4 Evaluation

For each combination (choice of T , averaging period of T ,
averaging period of P , and choice of bivariate direction: dry
and hot, dry and cold, wet and hot, wet and cold) we fit-
ted six copulas: the normal copula, the t copula (Schoelzel
and Friederichs, 2008), and the four Archimedean copulas
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Figure 2. Cereals in Lithuania, similar to Fig. 1. (a) Maximum temperature anomalies averaged over June and July vs. precipitation anomalies
averaged over August and September. Dots are coloured according to cereal yield anomalies if yield data were available and are grey
otherwise. Dry and cold conditions are on the lower left. (b) Cereal yield anomaly vs. bivariate return periods. The line indicates the best
linear fit with R2

= 0.56. (d) Linear model using predictors from (a) (MTP). The adjusted R2 is 0.47. The line denotes the 1 : 1 diagonal.

Clayton, Frank, Gumbel, and Joe (Embrechts et al., 2001).
The t copula and some of the Archimedean copulas allow
tail dependence, that is, dependence in the extremes (see e.g.
Schoelzel and Friederichs, 2008). The t copula is symmetric
such that if the upper tails are dependent, the lower tails are
as well. In contrast, the Gumbel and Joe copulas can model
only upper-tail dependence, whereas the Clayton copula can
model lower-tail dependence (all three are asymmetric). Note
that in this application, we aim for modelling the whole dis-
tribution to also capture events with low-return periods and
not only the extremes. Hence, only using extreme value cop-
ulas might not be appropriate. For further analysis we only
kept the copula with the best fit for each combination us-
ing the Bayesian information criterion implemented in the R
package VineCopula (Schepsmeier et al., 2015). Goodness
of fit was tested based on the Cramér–von Mises functional
(Genest et al., 2009) implemented in the R package copula
(Hofert et al., 2015). Out of 91 copulas, three had a p value
below 0.05, which is in the expected range. We subsequently

computed return periods with Eq. (4). We then fitted linear
models to explain crop yield anomalies as a function of bi-
variate return periods using the natural logarithm of the bi-
variate return periods as a predictor (i.e. Yc = a+ b ln(RP))
and only kept the model with the highest fraction of ex-
plained variance. This model was denoted by Mrp, using rp
as an abbreviation for return period. Furthermore, we fitted
ordinary linear models to each combination of climate and
time period using P and the different variants of T as pre-
dictors (i.e. crop yields are modelled as Yc = a+ bT + cP
with T ∈ {Tmin,T ,Tmax}). We also only kept the model with
the highest fraction of explained variance. We denoted this
model using MTP to refer to the two predictors T and P ,
which are used in this linear model. We then compare Mrp
and MTP with respect to the fraction of explained variance
using the adjusted R2 to account for the different number
of predictors (one in Mrp, two in MTP). We use the non-
parametric Mann–Whitney U test to test whether the mod-

www.biogeosciences.net/14/3309/2017/ Biogeosciences, 14, 3309–3320, 2017
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Figure 3. Sugar beet in Slovakia, similar to Fig. 1. (a) Maximum temperature anomalies averaged over April and May vs. precipitation
anomalies averaged over summer (June, July, and August). Dots are coloured according to sugar beet yield anomalies if yield data were
available and are grey otherwise. Dry and hot conditions are on the lower left. (b) Yield anomalies of sugar beet vs. bivariate return periods.
The line indicates the best linear fit with R2

= 0.68. (c) As in (a) but with precipitation averaged over July and August. Lines indicate levels
of equal yield anomalies as predicted by the linear model MTP. (d) Linear model using predictors from (c) (MTP). The adjusted R2 is 0.63.
The line denotes the 1 : 1 diagonal.

els Mrp achieve an overall significantly higher R2 than the
models MTP.

3 Results

We first present three examples for particular country–crop
combinations illustrating our approach and the comparison
between Mrp and MTP (Sect. 3.1). The examples are cho-
sen to illustrate (i) the various sensitivities of different crops
to different temperature–precipitation gradients and (ii) dif-
ferences in the selected time periods and the selected tem-
perature variable between the models Mrp and MTP. Sub-
sequently, summary statistics of all countries and crops are
presented (Sect. 3.2).

3.1 Examples

Yields often vary along a specific precipitation–temperature
gradient. In Fig. 1 we present an example of our approach for
maize yield anomalies in Germany. Maize yield anomalies
are high when maximum temperatures in July and August
are low and precipitation in June and July is high (lower left
of Fig. 1a). Yields decrease with increasing temperatures and
decreasing precipitation. Return periods of hot and dry events
increase along the same gradient, as denoted by the curves
of equal return periods. Accordingly, bivariate return peri-
ods along this gradient capture the variability in maize yield
anomalies well, explaining 72 % of their variance (Fig. 1b).
This variability is less well captured if a linear model is di-
rectly fitted to the same predictors (MTP,R2

= 0.62; Fig. 1c).
In a similar fashion, Fig. 2 presents an example of cereal

yields in Lithuania. In this case, yields are high when maxi-
mum temperatures are low in June and July and when precip-
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Figure 4. R2 from all countries and crops (see Fig. 5) summarized
in box plots. Medians are 0.34 for MTP and 0.4 for Mrp.

itation is low in August and September (lower left of Fig. 2a).
They decrease with increasing temperatures and, in contrast
to our first example, increasing precipitation, most likely be-
cause Lithuania’s climate is already wet (it has a humid con-
tinental climate with an average annual rainfall of around
620 mm). Return periods of hot and wet conditions increase
along the same gradient and thus they capture the variability
of cereal yield anomalies well (R2

= 0.56, Fig. 2b). Also in
this example, the variability in yield anomalies is less well
captured if a linear model is fitted to the same predictors
(MTP, R2

= 0.47; Fig. 2c).
Finally, Fig. 3 presents an example of yields of sugar beet

in Slovenia. Here, yields are high when maximum tempera-
tures are low in April and May and when precipitation is high
in July and August (upper right in Fig. 3a). Hence, yields
increase with decreasing temperatures and increasing pre-
cipitation. Return periods of cold and wet events increase
along this gradient and capture most of the variability in
yield anomalies in cereals (R2

= 0.68, Fig. 3b). Note that
here, because of their direction, the bivariate return periods
are positively related to yield anomalies. The variability in
yield anomalies is slightly less well captured by the best bi-
linear model, fitted to the maximum temperature anomalies
averaged over April and May and precipitation anomalies av-
eraged over July and August (MTP, R2

= 0.63; Fig. 3c and
d). This is also suggested when one compares how well the
curves of equal return periods (Fig. 3a) and the level sets of
the best linear model (MTP, Fig. 3c) capture yield anomalies
that lie in a similar range.

3.2 Summary statistics

The models Mrp perform significantly better than MTP (p <
0.05, Fig. 4). This is also evident for the individual crop–

country combinations (Fig. 5). On average the fraction of ex-
plained variance is 42 % for Mrp (coloured bars) vs. 36 %
for MTP (white bars). This corresponds to an increase in ex-
plained variance of 17 %. Crop yield anomalies mostly vary
most strongly along a hot–dry to cold–wet gradient with low
yields during hot and dry conditions (41 out of 91, 45 %, red
bars). Crop–country combinations in which yield anomalies
increase along the hot–wet to cold–dry gradient (green bars)
represent 29 of all 91 cases (about 32 %). The other two gra-
dients appear less often: cold–wet to hot–dry 10 times (blue
bars) and cold–dry to hot–wet 11 times (purple) out of 91.

Most often, Tmax is selected as the temperature variable
that is most relevant to determine crop yield variability. For
theMrp model, Tmax is chosen 46 out of 91 times (51 %). For
the MTP model, it is chosen 38 times (42 %). Tmin is chosen
29 (32 %) and 33 times (36 %).

For the Mrp model there is a large variety in the time peri-
ods to which crop yields are most sensitive (Fig. 6). Notably,
specific precipitation sums over longer time periods (mostly
3 months and more) seems to be most relevant for crops. In
contrast, crop yields are sensitive to temperature conditions
on shorter timescales (generally less than 3 months). Precip-
itation averaged over the whole spring and summer (13 inci-
dences) or over one season (28 incidences) was selected in
nearly 41 % of the cases, while averaging periods for tem-
peratures were only 2 months in nearly 86 % of the cases (78
incidences out of 91). In total, for precipitation, 2.5 times
more months are selected than for temperature (524 vs. 211).
Overall, climate conditions in summer (JJA) seem to be more
relevant for crops than climate during other periods. For both
temperature and precipitation, 63 % of the selected months
fall in the summer.

4 Discussion and conclusions

Linear models based on return periods of specific climate
conditions (Mrp) can better explain variability in annual crop
yield anomalies than linear models based directly on precip-
itation and temperature (MTP, 42 vs. 36 % of explained vari-
ance in crop yield anomalies on average, p < 0.05). The rea-
son for this might be that yields react non-linearly to more
extreme climate conditions. Including more variables such
as radiation, humidity, and soil moisture might further im-
prove the prediction of crop yield anomalies. However, due
to the shortness of yield time series (more than 50 % of the
yield series contain less than 30 years of data), robust mod-
els with many predictors are difficult to build. Our analysis
demonstrates the different sensitivities of crops to climate
conditions. Figures 5 and 6 can be used in combination to
disentangle the sensitivities of crop yields to climate condi-
tions at certain time periods. For example, in most countries
maize yields decrease for hot and dry conditions. However, in
countries such as Lithuania, Luxembourg, and the UK, maize
yields increase under hot and wet conditions (Fig. 5). For all
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Figure 6. Summary of which months are selected to obtain the model with the best performance based on bivariate return periods of
temperature and precipitation (Mrp). Months range from March until September. Red bars denote temperature, blue bars precipitation.

three countries, maize yields are most sensitive to precipi-
tation in summer (Fig. 6). Overall, crops are most sensitive
to climate variations along the hot–dry to cold–wet gradient.
This is in line with what can be expected from univariate as-
sessments (Lesk et al., 2016), showing that crop yields can
decrease substantially under heat or drought. Furthermore,
crops are most sensitive to maximum temperatures (in con-

trast to mean and minimum temperatures), whereas the most
important time period largely depends on the country and
the crop. Because crops can exhibit a threshold behaviour
at high temperatures resulting in crop damage (Porter and
Semenov, 2005), maximum temperatures might be the most
crucial variable for yield variability in most countries and
crops.
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4.1 Uncertainties in the estimation procedure

Estimating return periods is not free of uncertainties. Bivari-
ate copulas are defined on the uniform marginal distributions,
which is achieved by ranking of the original marginal distri-
butions. Copulas are thus related to the original bivariate dis-
tribution by Eq. (3). Naturally, the accuracy of this transfor-
mation improves with increasing sample size. After the data
have been transformed to the unit square, copulas have to be
fitted. The fitted copulas we used passed standard goodness-
of-fit tests, though longer climate time series certainly help
to obtain more robust fits (E-OBS data currently cover 1950–
2015). Uncertainties in the fitting procedure may be particu-
larly large for extreme return periods (Serinaldi, 2015).

4.2 Return periods of climate events and their relation
to impact-related variables

Despite the above-mentioned uncertainties, which are partic-
ularly relevant for extreme return periods, we argue that bi-
variate return periods of temperature and precipitation condi-
tions can be used as robust estimates of the climate variation
along a specific temperature–precipitation gradient, outper-
forming conventional linear models. In particular if both tem-
perature and precipitation are strongly affecting crop yields,
bivariate return periods will be related to yield variation.
This assumption holds for many crops and regions in Eu-
rope (Peltonen-Sainio et al., 2010) but might be different for
other regions in the world (Ray et al., 2015). The gradient
that is most strongly related to crop yield variability or other
impact variables can be chosen by testing different directions
in the temperature–precipitation space. In addition, due to the
non-linear nature of return periods, extreme conditions might
be captured more adequately. In particular, extreme heat and
drought can have extreme impacts, which might exceed the
impacts predicted by linear models, on crops (Porter and Se-
menov, 2005; Zscheischler et al., 2014a; Lesk et al., 2016).

For most country–crop combinations, crops are sensitive
to climate along the hot–dry to cold–wet gradient, with hot-
ter and drier conditions leading to lower yields, though there
is large variability among countries (Fig. 5). This is in line
with previous research on the relationship between climate
and other ecosystem variables. For instance, photosynthetic
carbon uptake also generally increases along the hot–dry
to cold–wet gradient (Zscheischler et al., 2014a; Ahlström
et al., 2015). Furthermore, most negative impacts on terres-
trial carbon uptake are associated with hot and dry conditions
(Zscheischler et al., 2014b).

We have demonstrated how bivariate return periods of cli-
mate conditions as indicators for climate variability along
a certain climate gradient can be used to predict crop yield
anomalies. Our proposed approach explains significantly
more yield variability than linear models based on temper-
ature and precipitation. However, climate time series should
be long enough to robustly estimate bivariate return periods

(preferably at least 50 years). Crops largely rely on precip-
itation and temperature at the right time periods, depending
on the specific crop and the location. Our analysis illustrated
that crops are often most sensitive to summer climate, maxi-
mum temperatures, and specific precipitation conditions over
longer time periods (at least 3 months). Other ecological vari-
ables sensitive to impacts of climate variability such as tree
rings and terrestrial carbon uptake and release may be anal-
ysed in a similar fashion. If other driver variables despite pre-
cipitation and temperature are crucially relevant for an im-
pact variable (such as for instance radiation, humidity, and
soil moisture), extensions to higher-dimensional return peri-
ods are possible, though the choice of the direction of a gradi-
ent becomes more difficult in higher dimensions. In conclu-
sion, bivariate return periods allow the summary of bivariate
climate conditions in a novel univariate measure, which then
can be used more easily to investigate associated impacts.

Data availability. The yield data used in this study are available
from Eurostat (http://epp.eurostat.ec.europa.eu). We used tempera-
ture and precipitation data over Europe from the E-OBS data set
(Haylock et al., 2008), available at www.ecad.eu/E-OBS/.
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