Biogenic sediments from coastal ecosystems to beach–dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise

Giovanni De Falco¹, Emanuela Molinaroli², Alessandro Conforti¹, Simone Simeone¹, and Renato Tonielli³

¹Istituto per l’ambiente Marino Costiero CNR, Oristano, Italy
²Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari, Venice, Italy
³Istituto per l’ambiente Marino Costiero CNR, Naples, Italy

Correspondence to: Giovanni De Falco (giovanni.defalco@cnr.it)

Received: 25 January 2017 – Discussion started: 20 February 2017
Revised: 29 May 2017 – Accepted: 7 June 2017 – Published: 5 July 2017

Abstract. Coastal ecosystems produce and store carbonate particles, which play a significant role in the carbonate dynamics of coastal areas and may contribute to the sediment budget of adjacent beaches. In the nearshore seabed of temperate zones (e.g. Mediterranean Sea and South Australia), marine biogenic carbonates are mainly produced inside seagrass meadows. This study quantifies the contribution of biogenic sediments, mainly produced in Posidonia oceanica seagrass meadows and secondarily in photophilic algal communities, to the sediment budget of a Mediterranean beach–dune system (San Giovanni beach, western Sardinia, western Mediterranean Sea). A set of geophysical, petrographic and sedimentological data was used to estimate the sediment volume and composition of the beach–dune system as a whole. The San Giovanni beach–dune system contains 3 797 000 ± 404 000 t of sediment, 83 % (3 137 000 ± 404 000 t) of which is located in the coastal wedge, 16 % (619 000 ± 88 000 t) in the dune fields and 1 % (41 000 ± 15 000 t) in the subaerial beach. The sediments are composed of mixed modern bioclastic and relict bioclastic and non-bioclastic grains from various sources. The system receives a large input of modern bioclastic grains, mainly composed of rhodophytes, molluscs and bryozoans, which derive from sediment production of present-day carbonate factories, particularly P. oceanica seagrass meadows. Radiocarbon dating of modern bioclastic grains indicated that they were produced during the last 4.37 kyr. This value was used to estimate the long-term deposition rates of modern bioclastic sediments in the various beach compartments. The total deposition rate of modern bioclastic grains is 46 000 ± 5000 t century⁻¹, mainly deposited in the coastal wedge (39 000 ± 4000 t century⁻¹) and dunes (7000 ± 1000 t century⁻¹), and 46 000 t represents ~1.2 % of the total beach–dune sediment mass. Carbonate production from coastal ecosystems was estimated to be 132 000/307 000 t century⁻¹, 28 % (15 % / 34 %) of which is transported to the beach–dune system, thus significantly contributing to the beach sediment budget.

The contribution to the beach sediment budget represents a further ecosystem service, which our data can help quantify, provided by P. oceanica. The value of this sediment-supply service is in addition to the other important ecological services provided by seagrass meadows. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has several implications for the adaptation of mixed and carbonate beaches to the loss of seagrass meadows due to local impacts and the changes expected to occur over the next few decades in coastal ecosystems following sea level rise.

1 Introduction

Carbonate beaches are widespread in tropical areas and locally, bioclastic carbonate sands may also be the main component of sediments in beach–dune systems in the temperate zone (Short, 2000).

The sediment budget of beach–dune systems is mainly influenced by the supply and delivery of sediments from the land (fluvial, cliff erosion) and from the sea (nearshore). The
latter involves the reworking and winnowing of seabed sediments and sediments derived from biogenic carbonate production associated with marine coastal ecosystems (Gómez-Pujol et al., 2013). In areas where supply from the land is scarce or absent, marine sources of sediment became more important for the maintenance of the coastal system, and beaches become progressively more calcareous (Bird, 2008). This is the case with the coasts of southern and southwestern Australia, the largest temperate carbonate province in the world, where carbonates produced along the shelf and in seagrass meadows are transported landward, supplying extensive beach–dune systems (Short, 2000).

Modern biogenic sedimentation along continental shelves is documented in both tropical and temperate environments (Tecchiato et al., 2015; Yamano et al., 2015; Short, 2010; De Falco et al., 2011; Ryan et al., 2008; Harney and Fletcher III, 2003). Along shores bordered by reefs or atolls, coral-based ecosystems such as barrier reefs and lagoons are a source of carbonates for beaches (Yamano et al., 2002). In temperate zones, marine biogenic carbonate sediments are often produced in the seagrass meadows that colonise the nearshore area (De Muro et al., 2016; Mazarrasa et al., 2015; Short 2010; De Falco et al., 2008; Sanderson and Eliot, 1999).

In the Mediterranean Sea the main marine carbonate factories in the infralittoral zone are Posidonia oceanica meadows, which cover about 1.5% of the total Mediterranean Sea sediment surface (Pasqualini et al., 1998) and occur in 16 Mediterranean countries (Giakoumi et al., 2013).

Sediments accumulating inside the meadows generally show a high percentage of biogenic carbonate particles produced by the biota associated with the seagrass ecosystem, such as coralline algae, foraminifers, gastropods, bivalves, serpulid polychaetes, bryozoans and echinoids (Fornós and Ahr, 1997).

Several authors have estimated carbonate production in P. oceanica meadows using various approaches. Estimates based on the rhizome growth rate of meadows located in the northern sector of the Gulf of Oristano (western Sardinia, Italy) indicate that carbonate production is in the range of 390 to 1147 g DW CaCO$_3$ m$^{-2}$ a$^{-1}$ (De Falco et al., 2008). These values are amongst the highest for seagrass ecosystems (Gacia et al., 2003) and lie within the range calculated for coral reefs (1160 g DW g DW CaCO$_3$ m$^{-2}$ a$^{-1}$, Milliman and Droxlter, 1996). The analysis of a core collected from a P. oceanica meadow near Port Lligat (Cadaqués, Girona, northeastern Spain) enabled skeletal carbonate accumulation rates to be estimated at 452.9 \pm 15.5 g DW CaCO$_3$ m$^{-2}$ a$^{-1}$ (Serrano et al., 2012). This value is consistent with those estimated for western Sardinia (De Falco et al., 2000, 2008). At a global level, carbonate production from seagrass meadows is estimated at 1050 g DW CaCO$_3$ m$^{-2}$ a$^{-1}$ (Mazarrasa et al., 2015, and references therein). Those estimations considered the burial rate of biogenic carbonate to the carbonate production, with the assumption that no deposition of carbonate sediments of external origin occurred. Conversely, Canals and Ballesteros (1997) evaluated the carbonate production from a Posidonia oceanica meadow as 60–70 g DW CaCO$_3$ m$^{-2}$ a$^{-1}$, considering the production related to the epiphytes, which were scraped from the blades using a razor blade. Their method clearly underestimates the bulk production because they did not take into account the fauna associated with the rhizome compartment, which is generally composed by many carbonate-producing organisms (Como et al., 2008).

The Posidonia oceanica seagrass meadows are very widespread near the shore. For this reason, P. oceanica meadows are considered the main carbonate factory of the Mediterranean inner shelf (Canals and Ballesteros, 1997; Fornós and Ahr, 1997, 2006; De Falco et al., 2008, 2011; Mateu-Vicens et al., 2012).

Biogenic carbonate production is also associated with photophilic algal communities colonising nearshore rocky bottoms. The average production rate associated with photophilic algae at a selection of sites in the western Mediterranean was estimated at 289 g DW CaCO$_3$ m$^{-2}$ a$^{-1}$ (Canals and Ballesteros, 1997).

The carbonate sediments produced inside these coastal ecosystems nourish beaches and coastal systems along Mediterranean shores (De Falco et al., 2003; De Falco et al., 2008; Gómez-Pujol et al., 2013; Vacchi et al., 2016). This has been observed in the Balearic Islands (Gómez-Pujol et al., 2013), western Sardinia (Tigny et al., 2007; De Falco et al., 2003) and in pocket beaches in southern Corsica (De Muro and De Falco, 2010). Mixed (mixture of siliciclastic and carbonate grains) and carbonate beaches are widespread at many other Mediterranean sites (e.g. the Ionian coast of Puglia, South Italy, Barsanti et al., 2011; and northern Sardinia, Campus et al., 2008), and they may be threatened by alteration of carbonate sediment budgets coupled with sea level rise. Carbonate sediment budgets can be impacted by the general decline of coastal ecosystems following local impacts, seawater acidification and climate change (Duarte et al., 2013; Mazarrasa et al., 2015; Wycott et al., 2009).

Seagrass is generally known as an ecosystem engineer as it can modify the abiotic environment and contribute to sedimentation and sediment modification (Borg et al., 2005). Several studies have shown that sediment retention and wave attenuation are probably the most valuable ecosystem services provided by P. oceanica meadows (Vassallo et al., 2013, and references therein). However, little attention has been paid to the meadows’ role as contributors to long-term beach sediment budgets because no quantitative computation of the exchange and deposition rates of carbonate sediments from P. oceanica meadows to beach–dune systems has yet been made.

The aim of this study was to compare the long-term deposition rate of biogenic carbonate sediments in a Mediterranean beach–dune system to the estimated carbonate production rates of adjacent carbonate factories. For the purposes of this study we define the beach–dune system as the
The embayment is 4 km wide, running from Cape Seu to Cape San Marco, and is characterised by cliffs alternating with sandy beaches. The geological setting of the Sinis Peninsula includes a sequence of volcanic and sedimentary rocks (marls, sandstone and limestone) dating from the Neogene to the Quaternary. The cliffs along the San Giovanni embayment are composed of Miocene limestone and marls, early Pliocene sandstones, Pliocene basalts and a late Pleistocene succession composed of sandy to gravelly shallow-marine, coastal aeolian and alluvial fan deposits (Andreucci et al., 2009).

The seabed map, in Fig. 1, shows that the seabed in the shallower northern sector of the bay and around the capes is mainly rocky, while unconsolidated sedimentary deposits are present in the central sector and seagrass meadows are widespread along the outer sector. Inland, two dune fields have been mapped (geological map of Sardinia on a scale of 1 : 25000 available on the portal of the Sardinia Regional Administration http://www.sardegnageoportale.it/disclaimer.html). The sediment grain size of the San Giovanni beach ranges from fine-medium sand to coarse sand with biogenic carbonate content varying from 30 to 90 % of dry weight (De Falco et al., 2003). Based on sediment composition, this beach can be classified as mixed bioclastic-siliciclastic.

The seagrass meadows are composed of the endemic Mediterranean species Posidonia oceanica. Meadow distribution is influenced by substrate morphology. The plant colonises rocky and sandy substrates, forming a matte ~ 50 cm thick, with frequent inter-matte channels inside the meadow and associated bioclastic sediments (De Falco et al., 2003). The nearshore rocky outcrops are colonised by photophilic algae (De Falco and Piergallini, 2003).

In the San Giovanni embayment, P. oceanica may form seagrass berms resulting from the accumulation of litter (leaves and rhizomes) and sediments at the extreme landward edge of wave influence (Simeone and De Falco, 2012; Simeone et al., 2013).

The prevailing winds are mainly from the northwest (mistral), often in the form of severe storms, especially during winter. In autumn and winter, southwestern winds (libeccio) are also important (Corsini et al., 2006). The tides are negligible, with a maximum range of < 0.2 m (Cucco et al., 2006). Waves more than 3 m high occur along the prevalent incoming axis, located in the northwestern sector between 280 and 330°.

The morphodynamics of the San Giovanni beach are conditioned by the occurrence of rocky outcrops that influence wave run-up and the interactions between the surf zone and foredunes in the various beach sectors (Simeone et al., 2014). The longshore current induced by waves during mistral wind events follows a cell circulation pattern (Balzano et al., 2013). The cliffs and the submerged rocky platforms are the main factors controlling subaerial beach height and beach dynamics (Simeone et al., 2014).
3 Methods

3.1 Geophysical data

The morphology of the beach–dune system was analysed using digital terrain models (DTMs) of the subaerial and submerged sectors. The DTM of the subaerial beach, dune fields and back-barrier areas was derived from lidar data, with a spatial resolution of 1 m and a vertical resolution of 0.15 m (available on the portal of the Sardinia Regional Administration http://www.sardegnageoportale.it/disclaimer.html), and differential GPS real-time kinematic (RTK) data, with a vertical resolution of 0.15 m. The DTM of the marine area was derived from multibeam echosounder (MBES) data, acquired using a Reson SeaBat 7125 operating at a sonar frequency of 400 kHz, which yielded a DTM with a spatial resolution of 1 m and a vertical resolution of 0.01 m. These data were integrated with single-beam echosounder (SBES) data, acquired using a Knudsen 320BP operating at a sonar frequency of 28/200 kHz. Data were acquired along transects perpendicular and parallel to the shoreline and were interpolated to obtain a DTM with a grid resolution of 20 m.

The sediment thickness of the submerged sector (coastal wedge) of the beach was determined by collecting ∼14 km of very-high-resolution seismic lines using a sub-bottom Chirp EdgeTech profiler 3100P at 4–24 kHz (Fig. 1). The vertical resolution of the seismic data was 0.1 m.

3.2 Sedimentological data

The sedimentological dataset used in this study was obtained from a number of sediment transects: four transects in the dunes (15 sediment samples), six transects in the subaerial beach (11 sediment samples) and six transects in the coastal wedge (26 sediment samples). In addition, eight offshore sediment samples were taken (Fig. 1). The marine sediments were collected using a Van Veen grab. Authorisation for sediment sampling was granted by the Oristano department of the Italian Coast Guard and the marine protected area known as Penisola del Sinis – Isola di Mal di Ventre.

The grain size of the sampled sediments was determined by dry sieving (1/2 phi intervals). Silt and clay-size particles were not analysed because they generally form a small proportion of the sediment (<5 %) in this high-energy environment (Table S1 in the Supplement). The carbonate content was determined using a Dietrich–Fruhling calcimeter.

3.3 Petrographic analysis

The collected samples were analysed using a stereomicroscope, after which they were injected with epoxy resin, cut into thin sections and examined under a polarising microscope. Statistical analysis of petrographic data was based on point-counting following the method described by Flügel (1982). A minimum of two 300-point counts were performed on separate portions of each thin section to reduce errors linked to sediment heterogeneity. We calculated the percentages of grain types among the samples, tabulating bioclastic and non-bioclastic components (Table S2).

Bioclastic components are made up of calcite and micritic assemblages of molluscs (bivalves and gastropods), calcareous algae (rhodophytes), benthic foraminifers, echinoids, bryozoans and brachiopods (Table S2). Non-bioclastic grains are made of siliciclastic and unidentified grains.

Following the suggestions of James et al. (1997), we sought to classify the bioclastic grains by morphology, colour and abrasion (Fig. 2). Our sediments are palimpsest, consisting of material currently being produced and deposited in the basin (Holocene), as well as elements deposited previously. Based on the methodology of bioclastic grain classification proposed by James et al. (1997) and Rivers et al. (2007), we were able to recognise the grains and classify them as relict or modern bioclastic grains (MBGs).
Relict grains (Fig. 2a) are (i) highly abraded (rounded and to some degree polished when compared with equivalent modern bioclastic grains) (ii) stained yellow-brown due to the presence of iron oxides or other diagenetic phases, and (iii) filled in (where skeletal pores are present) with silt-size carbonate particles as well as micrite. The physical and chemical alteration of relict grains makes it difficult or impossible to recognise their biogenic components. In James et al. (1997), relict particles were dated to between 10 000 and 36 000 yr BP.

Modern bioclastic grains originate from the carbonate factory of the infralittoral zone. The grains can be slightly abraded, light grey to buff-coloured skeletal particles. Some of them show (i) lack of brightness, (ii) rounding of skeletal edges and (iii) lack of well-defined fine-scale skeletal surface structures (Fig. 2b). Sedimentary recycling is particularly effective during the migration of the coastal system via barrier rollover to the dune system. Some of the grains are also fine sand bioclasts that show little or no sign of alteration or reworking. Major sources of the regional carbonate assemblage include bivalves, gastropods, rhodophytes, bryozoans, brachiopods and benthic foraminifers.

Six modern bioclastic carbonate samples were radiocarbon dated (Table 1). The sediment samples were rinsed in Milli-Q water, and they were inspected under a stereomicroscope to select shells and shell fragments from the mixed samples.

The radiocarbon measurements were carried out by the standard method, at the Beta Analytic Radiocarbon Dating, Miami, Florida (USA). Acid etch (hydrochloric acid, HCl) was applied as a pretreatment. The radiocarbon ages were calibrated considering a reservoir effect of the western Mediterranean Sea (Delta-R = 46 ± 40). Applicable calendar-calibrated results were calculated using Marine13 (Reimer et al., 2013; Talma and Vogel, 1993). The results are presented as conventional and calibrated ages (Table 1).

The similarities and differences between sediments from the dunes, subaerial beach, coastal wedge and offshore sediments were determined using multivariate statistics. Factor analysis was applied to petrographic and grain size data, previously transformed by the ranking method.

3.4 Sediment budget

The sediment volume of the beach–dune system was estimated by subdividing it into three compartments: the dune fields, the subaerial beach and the coastal wedge (Fig. 3). The toe of the foredune separates the dunes from the subaerial beach, whereas the shoreline separates the subaerial beach from the coastal wedge. The offshore limit of the coastal wedge is a morphological step visible in the DTM (Figs. 3 and 4).

In order to compute the volume of the dunes and subaerial beach, we subtracted the grid of the underlying substrate surface from the grid of the dune and subaerial beach surface. Figure 4 shows a schematic cross section with the surfaces used for volume estimation.

The morphology of the substrate underlying the dunes and the subaerial beach was interpolated, as shown in Fig. 4, by using the elevation data of the boundary of the dunes and adding the elevation data of the rocky outcrops present on the subaerial beach and along the shoreline. Those data were interpolated to obtain a grid of the basal surface of the sedimentary body (the dashed red line in Fig. 4). This surface was subtracted from the grid of the terrain surface, available from the DTM (lidar and RTK data), in order to compute the volume using the Global Mapper 13 software package. The volume estimation margin of error was computed consider-
Table 1. Radiocarbon datings for various carbonate particles. Locations of sampling points are shown in Fig. 1.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample location</th>
<th>Conventional age (yr BP)</th>
<th>δ^{13}C (‰)</th>
<th>δ^{18}O (‰)</th>
<th>Calibrated age (cal yr BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-45A</td>
<td>Subaerial beach</td>
<td>1050 ± 30 BP</td>
<td>2.3</td>
<td>0.7</td>
<td>Cal BP 660 to 510</td>
</tr>
<tr>
<td>SG-D4</td>
<td>Dunes</td>
<td>4320 ± 30 BP</td>
<td>2.1</td>
<td>1.1</td>
<td>Cal BP 4510 to 4245</td>
</tr>
<tr>
<td>SG-D6</td>
<td>Subaerial beach</td>
<td>1970 ± 30 BP</td>
<td>1.7</td>
<td>1.1</td>
<td>Cal BP 1580 to 1355</td>
</tr>
<tr>
<td>SG-38</td>
<td>Coastal wedge</td>
<td>1120 ± 30 BP</td>
<td>2.4</td>
<td>0.7</td>
<td>Cal BP 705 to 550</td>
</tr>
<tr>
<td>SG-33</td>
<td>Coastal wedge</td>
<td>1190 ± 30 BP</td>
<td>2.7</td>
<td>1.8</td>
<td>Cal BP 780 to 630</td>
</tr>
<tr>
<td>SG-B4</td>
<td>Dunes</td>
<td>1020 ± 30 BP</td>
<td>1.6</td>
<td>1.9</td>
<td>Cal BP 645 to 495</td>
</tr>
</tbody>
</table>

Figure 4. Beach profile showing the various layers used for sediment volume computation and the methods adopted for determination of the surface elevation.

Sediment volume data were converted into sediment mass, adopting a porosity value of 0.3 and the density of calcite (2.71 t m\(^{-3}\)). Based on petrographic analysis, the mass of modern carbonate bioclastic sediments was estimated for the different beach compartments (dunes, subaerial beach and coastal wedge). The deposition rates of modern carbonate bioclastic grains were computed considering a span of ages from approximately 0.5 to 4.4 ka BP, based on radiocarbon dating of bioclastic grains (Table 1).

Carbonate sediment production in adjacent carbonate factories, i.e. the *Posidonia oceanica* seagrass meadows and the photophilic algal communities, was estimated by considering their surface area and the production rates reported in the literature (De Falco et al., 2008 and Serrano et al., 2012, for *P. oceanica* meadows; Canals and Ballesteros, 1997, for photophilic algae).

4 Results

4.1 San Giovanni beach–dune system morphology and stratigraphy

The morphology of the beach–dune system of the San Giovanni embayment is mainly determined by the presence of rocky outcrops in the back-barrier region and along the shoreface.

The northern sector of the beach–dune system (S1, Fig. 3) includes a dune field, beaches located at the foot of cliffs and a narrow coastal sedimentary wedge delimited offshore by a rocky outcrop. The dune field is partially connected to the beach in the north, while it consists of clifftop dunes in the south.

The cliffs are vertical, 10 m high and carved out of the Pleistocene sedimentary formations (sandstones and limestones). At the foot of the cliffs the beaches are embayed between rocky headlands. The cliffs evolved in the historical period, as revealed by the presence of Roman tombs in the collapsed blocks (Acquaro, 1995). The sedimentary coastal
wedge is located between the shoreline and a depth of 7 m, at which the bedrock, partially colonised by Posidonia oceanica seagrass, crops out extensively. Bars are present along the submerged beaches.

Along the central sector of the beach–dune system (S2, Fig. 3), the dune field extends inland for about 500 m. The dunes are partially vegetated, and parabolic dunes with blowouts are also present. The beach extends from the foredune to the foreshore where the bedrock crops out. The bedrock extends offshore, from the shoreline to a depth of 5 m. The coastal wedge extends from the seaward limit of the rocky outcrop (5 m) to the 15 m depth line, marked by a clear break in the slope, which is visible in the DTM based on MBES surveys (Figs. 3, 5).

In the southern sector (S3, Fig. 3) the dunes are deposited on a scarp lying on marls dated to the upper Miocene. The lithology prevents the preservation of vertical cliffs, favouring, instead, the formation of 15 m high seaward-sloping talus deposits that have resulted from slumping. Dunes have developed on the steep substrate, with the beach connected to the toe of the dunes. The coastal wedge is in continuity with the beach, down to a rocky outcrop located at around 7–8 m depth. In this area there are several parallel bars. In the offshore sector, the coastal wedge is depth-limited by a break in the slope at 15 m depth.

The seismic surveys enabled assessment of the coastal wedge’s thickness and stratigraphy (Fig. 5), finding variable thicknesses, up to a maximum of about 3 m, depending on the morphology of the rocky substrate, which determines the space available for sediments (Fig. 5). To the north, several rocky outcrops limit the coastal wedge to small depositional areas (Line L1). In the central sector the coastal wedge lies on the seaward side of a very shallow rocky outcrop of the substrate (Line L2), whereas to the south a major rocky outcrop clearly separates the submerged beach with bars from the deeper portion of the coastal wedge (Line L3).

4.2 Petrographic features of the mixed sediments

The dunes and coastal wedge sediments are mainly bioclastic medium-fine sands (CaCO$_3$ 75 ± 12 % and 67 ± 11 % respectively), whereas the subaerial beach sediments are mixed coarse sands (CaCO$_3$ 44 ± 18 %) (Table S1). The investigated mixed deposits include bioclastic and non-bioclastic components in highly variable proportions (Table S2).

Modern bioclastic grains, moderately abraded and unabraded, are generally found in all components of the beach–dune system (range 33–53 %) and are particularly abundant in the coastal wedge (53 %) and dunes (46 %) (Fig. 6a). Relict bioclasts, characterised by coarse sand to very fine granule-size skeletal particles that are highly abraded, rounded and heavily stained with iron oxides, are more abundant in the offshore samples (29 %) outside the beach–dune system (Fig. 6b).

Non-bioclastic components account for most of the subaerial beach’s sedimentary facies (61 %), while they are subordinated to the bioclastic components in the other compartments (Fig. 6c).

We grouped siliciclastic and unidentified grains under non-bioclastic inputs. Siliciclastic components are represented mostly by well-sorted, medium- to coarse-grained well-rounded quartz grains. Other components include medium- to coarse-grained lithic fragments, whose origin is sedimentary, plutonic, volcanic and metamorphic. Unidentified grains were not readily identifiable under the binocular microscope due to either (i) extreme diagenetic alteration or secondary calcification and (ii) severe physical abrasion or fragmentation.

Modern bioclastic grains are mainly derived from coralline algae and molluscs, followed by bryozoans, brachiopods, benthic foraminifers and echinoids (Fig. 7) (Table S2). Consequently, the carbonate factory is characterised by rhodophytes and molluscs since these are the most important carbonate sediment-producing biota (Nelson, 1988).

The radiocarbon dating of six samples of modern bioclastic grains is reported in Table 1. The oldest grain was dated to 4510–4245 calibrated years BP, whereas the most recent grain was dated to 645–495 calibrated years BP.

4.3 Multivariate statistics

Factor analysis was applied to petrographic and grain size data in order to reduce a large number of variables to a few uncorrelated variables. Factor analysis showed that the investigated deposits are readily identified from the considered variables (Fig. 8). The first three factors explain ~ 74 % of the variance of the samples, (factor 1, 46 %; factor 2, 18 %; factor 3, 10 %).

The beach–dune system compartments are clearly separated in the plot of the first and second factors (Fig. 8). Factor 1 is correlated with coarse grain size and relict grains, which are the main components of offshore and subaerial beach samples, and is inversely correlated with benthic foraminifers, MBGs and fine sands, which are more abundant in dunes and the coastal wedge. Factor 2 provides further separation of coastal wedge and offshore samples and subaerial beach–dune samples, the former characterised by rhodophytes, brachiopods and medium grain-size, and the latter by molluscs, bryozoans and fine grain-size (Fig. 8).

4.4 Sediment budget

The volume of sediment allocated to the three compartments of the beach–dune system (dunes, subaerial beach and coastal wedge) was computed (Table 2). The entire system has ~ 2 × 106 m3 of sediment, of which 1667 000 ± 160 000 m3 (83 % of the total) is in the coastal wedge, 330 000 ± 47 000 m3 (16 %) is in the dunes and only 22 000 ± 8 000 m3 (1 %) is in the subaerial beach.
The total sediment mass was estimated at 3797000 ± 404000 t. The total amount of modern bioclastic sediments is 1961000 ± 205000 t. Considering a time span of sediment deposition of 43 centuries, based on the oldest radiocarbon dating of modern bioclastic grains (Table 1), we can estimate the deposition rates of MBGs. The total deposition rate is 46000 ± 5000 t century$^{-1}$, mainly in the coastal wedge (85%) and dunes (15%).

The sediment production from the coastal carbonate factories (Posidonia oceanica meadows and photophilic algal communities) was computed by multiplying the carbonate production rates per surface unit reported in previous studies (Serrano et al., 2012; De Falco et al., 2008; Canals and Ballesteros, 1997) per the surface area occupied by those ecosystems, based on seabed mapping (Fig. 1). The surface area of P. oceanica meadows was limited by the bathymetric contour line of 15 m, which is the deeper limit of the coastal wedge, assuming that sediment transport from the carbonate factories to the beach was mainly driven by longshore currents. The total carbonate production rate from coastal ecosystems was estimated at 132000–307000 t century$^{-1}$, with P. oceanica meadows accounting for 76–90% of total production. The deposition rate of modern bioclastic sediment in the beach system corresponds to 15–34% of the carbonate production rate of the adjacent coastal ecosystems, assuming that the sediments were vertically well mixed. This assumption is particularly reliable for the coastal wedge, which accounts for the greater portion of sediment mass of the beach–dune system. Indeed the coastal wedge was char-
Table 2. The sediment budget of the beach–dune system compartments.

<table>
<thead>
<tr>
<th>Variable description</th>
<th>Unit</th>
<th>Value</th>
<th>Reference – method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment volumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunes</td>
<td>m³</td>
<td>330 000 ± 47 000</td>
<td>Lidar data</td>
</tr>
<tr>
<td>Subaerial beach</td>
<td>m³</td>
<td>22 000 ± 8000</td>
<td></td>
</tr>
<tr>
<td>Coastal wedge</td>
<td>m³</td>
<td>1 667 000 ± 160 000</td>
<td>Seismic and/or multibeam data</td>
</tr>
<tr>
<td>Total</td>
<td>m³</td>
<td>2 019 000 ± 215 000</td>
<td></td>
</tr>
<tr>
<td>Porosity of sands</td>
<td>Adim</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Density of dry sediments</td>
<td>t m⁻³</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>Sediment mass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunes</td>
<td>t</td>
<td>619 000 ± 88 000</td>
<td></td>
</tr>
<tr>
<td>Subaerial beach</td>
<td>t</td>
<td>41 000 ± 15 000</td>
<td></td>
</tr>
<tr>
<td>Coastal wedge</td>
<td>t</td>
<td>3 137 000 ± 301 000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>t</td>
<td>3 797 000 ± 404 000</td>
<td></td>
</tr>
<tr>
<td>Mass of modern bioclastic sediments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunes</td>
<td>t</td>
<td>285 000 ± 41 000</td>
<td>Petrographic analysis</td>
</tr>
<tr>
<td>Subaerial beach</td>
<td>t</td>
<td>14 000 ± 5000</td>
<td></td>
</tr>
<tr>
<td>Coastal wedge</td>
<td>t</td>
<td>1 663 000 ± 160 000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>t</td>
<td>1 961 000 ± 205 000</td>
<td></td>
</tr>
<tr>
<td>Time span of sediment deposition</td>
<td>Centuries</td>
<td>43</td>
<td>Calibrated ¹⁴C dating</td>
</tr>
<tr>
<td>Deposition rate of modern bioclastic sediments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunes</td>
<td>t century⁻¹</td>
<td>7000 ± 1000</td>
<td></td>
</tr>
<tr>
<td>Subaerial beach</td>
<td>t century⁻¹</td>
<td>300 ± 100</td>
<td></td>
</tr>
<tr>
<td>Coastal wedge</td>
<td>t century⁻¹</td>
<td>39 000 ± 4000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>t century⁻¹</td>
<td>46 000 ± 5000</td>
<td></td>
</tr>
<tr>
<td>Surface of P. oceanica meadows</td>
<td>m²</td>
<td>2 624 000</td>
<td>Seabed mapping</td>
</tr>
<tr>
<td>Surface of photophilic algae</td>
<td>m²</td>
<td>1 119 000</td>
<td></td>
</tr>
<tr>
<td>Carbonate production rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posidonia oceanica</td>
<td>g DW m⁻² yr⁻¹</td>
<td>493 ± 15 (390/1047)</td>
<td>Serrano et al. (2012), De Falco et al. (2008) Canals and Ballesteros (1997)</td>
</tr>
<tr>
<td>Photophilic algae</td>
<td>g DW m⁻² yr⁻¹</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Mass of biogenic carbonate produced by coastal ecosystems</td>
<td>t century⁻¹</td>
<td>129 000 ± 4000 (102 000/275 000)</td>
<td></td>
</tr>
<tr>
<td>Posidonia oceanica</td>
<td>t century⁻¹</td>
<td>32 000</td>
<td></td>
</tr>
<tr>
<td>Photophilic algae</td>
<td>t century⁻¹</td>
<td>162 000 ± 4000 (135 000–307 000)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>t century⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of biogenic sediment delivered to the beach</td>
<td>Mass % of carbonate production</td>
<td>28 % (15 % / 34 %)</td>
<td></td>
</tr>
</tbody>
</table>

5 Discussion

The results of our study show that the formation and evolution of the San Giovanni beach–dune system is controlled by a combination of several factors, including the availability of heterogeneous sediments resulting from the reworking of relict sediments and the production of biogenic sediments from coastal carbonate factories.

The San Giovanni beach–dune system is composed of mixed bioclastic and relict sediments deriving from various sources. The relict sediments include siliciclastic grains and biogenic carbonate (sensu Rivers et al., 2007; James, 1997). Those grains were exposed to meteoric conditions for a period of time and were then submerged once more, and they can thus be attributed to the last interglacial period. Relict grains constitute a large portion of the offshore sediments, whereas the beach–dune sediments are mainly composed of modern biogenic carbonates.

The system has also received a large input of modern bioclastic grains derived from sediment production by present-day carbonate factories. The biogenic carbonates are mainly composed of rhodophytes, molluscs and bryozoans. This association is typical of sediments produced by *P. oceanica* ecosystems, which are the main ecosystem producers of carbonate sediments in the infralittoral zone of the Mediterranean (Vacchi et al., 2016; De Falco et al., 2011; Canals and Ballesteros, 1997). The skeletal components of biogenic sediments associated with the meadows are mainly composed of molluscs, red algae, foraminifers, bryozoans and echinoids (Jeudy de Grissac and Boudouresque, 1985; Blanc and Jeudy de Grissac, 1989; Fornós and Ahr, 1997). Carbonate sediments produced in *P. oceanica* meadows are mostly trapped inside them, but we have demonstrated that a significant pro-
portion, estimated at 15 to 34%, is exported outside the upper bathymetric limit towards the shoreface due to wave action.

This is the first study to quantify the contribution of biogenic sediments produced in *P. oceanica* meadows and in photophilic algal communities to the beach sediment budget. A sediment budget is an evaluation of sediment gains and losses, or sources and sinks, within a specified cell or in a series of connected cells over a given time period. The algebraic difference between sediment sources and sinks in each cell, and hence for the entire sediment budget, must equal the rate of change in sediment volume occurring within that region (Rosati, 2005).

The production of biogenic carbonate by coastal ecosystems, the deposition rates and the schematic sediment transport pathways for the San Giovanni beach are shown in Fig. 9. Coastal ecosystems, to which the main contributor is *Posidonia oceanica* seagrass meadows, constitute a major source of sediments for the beach, with a net contribution of $46,000 \pm 5000 \text{m}^3 \text{century}^{-1}$, equivalent to $\sim 26,000 \text{m}^3 \text{century}^{-1}$, $26,000 \text{m}^3$ representing $\sim 1.2\%$ of the current total beach–dune sediment volume. In other words, this beach has a positive budget, with an increase in volume over the long term, which is partially due to biogenic sand nourishment from a biological source. However, only a fraction (28% on average) of the biogenic sediment produced inside the coastal ecosystems is delivered to the beach. The remaining fraction of sediment is transported outside the beach system, trapped inside the ecosystems (De Falco et al., 2000, 2008, 2011; Serrano et al., 2012) or consumed by the process of carbonate grain alteration (López et al., 2016).

The contribution to the beach sediment budget represents a further ecosystem service provided by *P. oceanica*. Vassallo et al. (2013) estimated the value of the main ecosystem services provided by *P. oceanica* at $172 \text{€ m}^{-2} \text{a}^{-1}$. The authors considered sediment retention by *P. oceanica* meadows to be their most important contribution, accounting for almost all of their value. This estimate is 2 orders of magnitude higher than the values proposed by other authors for other coastal biomes (de Groot et al., 2012; Costanza et al., 2014). The calculation made by Vassallo et al. (2013) is an exception and probably overestimates the sediment retained in the meadows ($5.19 \times 10^4 \text{g m}^{-2} \text{a}^{-1}$), which is 50 times higher than the values estimated by other authors (Serrano et al., 2012; De Falco et al., 2000). Our data quantify not only the volumes of sediment retained in the meadows but also the proportion that is exported to the beach–dune system. This facilitates a more detailed evaluation of the respective ecosystem services provided by the seagrass than had previously been possible.

The dependence of the beach sediment budget on carbonate production associated with costal ecosystems has several implications for the adaptation of mixed and carbonate beaches to environmental changes, at both local and global levels. Seagrass ecosystems are often impacted by intense human activities that inevitably affect their distribution (Meinesz et al., 1991; Duarte, 2002). The combined effects of anthropogenic and natural disturbance lead to a global decline in seagrass meadows, with loss rates estimated at 2 to 5% per year (Waycott et al., 2009; Short et al., 2011). The decline in *P. oceanica* meadows has been reported in the Mediterranean Sea (Ardizzone et al., 2006; Boudouresque et al., 2009; Montefalcone et al., 2010), where many meadows have already been lost in recent decades (Bianchi and Morri, 2000; Leriche et al., 2006; Marbà et al., 1996).
Figure 8. Results of factor analysis applied to the three beach–dune system compartments and offshore samples. Variables correlated with factor scores are indicated along the axes. REL is relict grains; MBG is modern bioclastic grain.

In the case of San Giovanni beach, the reduction of complete disappearance of the meadows would lead to the reduction of carbonate sediment production. Less sediment produced in coastal carbonate factories means less sediment being delivered to the beach, with a consequent possible change in the beach sediment budget from positive (beach accretion) to negative (beach erosion).

In relation to sea level rise, more complex effects are expected. The expected sea level rise by the year 2100 for the study area ranges from 0.54 to 1.3 m (Antonioli et al., 2017; De Falco et al., 2015). This will determine an adaptation of the whole coastal system. One of the expected consequences of sea-level rise is the retreat of shorelines and coastal erosion-related sediment redistribution due to waves and currents (Le Cozannet et al., 2014). The landward retreat of the shoreline implies the creation of newly available space for sedimentation, which will be occupied by sediments derived from the winnowing of subaerial beach and dune sediments. At the same time, however, sea level rise will have an impact on seagrass meadows. Specifically, the existing seagrass beds will be located at greater depth, with a decrease in the amount of light reaching them. This will reduce plant productivity (Short and Neckels, 1999; Marba and Duarte, 1997) and hence biogenic carbonate sediment production and transport from coastal ecosystems to the beach. In addition, sea level rise will reduce the surface area of the seagrass meadows able to transfer biogenic carbonates to the coastal wedge and the beach.

Furthermore, the rate at which seagrass meadows colonise new areas is slower than what will be required in order to keep up with the expected pace of sea level rise. Colonisation can occur by seed or lateral expansion, but those processes are known to be very slow and to depend on external forcing (i.e. basin hydrodynamics) and internal species-specific traits (i.e. rhizome elongation rates and the rhizomes’ angle of branching) (Boström et al., 2006). Model-based studies show that complete coverage of the seabed by P. oceanica can take more than 600 years (Kendrick et al., 2005).

Consequently, the time required for mixed beaches to adapt to sea level rise will be longer than that of beaches that are mostly nourished by riverine sediments since the systems will also be affected by a reduction of sediment input due to the changes occurring in coastal ecosystems.

6 Conclusions

The sediments of the San Giovanni beach–dune system are composed of mixed modern bioclastic and relict grains. This system is far from any terrestrial source of sediments and represents a good model for computing the contribution of modern biogenic carbonate sediments to the beach sediment budget. The system receives a considerable input of modern bioclastic grains from the present-day carbonate factories, particularly the P. oceanica seagrass meadows. The total deposition rate of modern bioclastic grains is 46000 ± 5000 t century⁻¹, equivalent to
Figure 9. Schematic representation of the long-term biogenic sediment budget of the San Giovanni beach–dune system. Biogenic sediment production rates from coastal ecosystems, sediment transport pathways and biogenic sediment deposition rates throughout the beach–dune system.

$\sim 26,000 \text{ m}^3 \text{ century}^{-1}$, 26 000 m^3 representing $\sim 1.2\%$ of the current total beach–dune sediment volume.

The total rate of carbonate production from coastal ecosystems was estimated to be $132,000–307,000 \text{ t century}^{-1}$, with *Posidonia oceanica* meadows accounting for 76–90% and photophilic algal communities accounting for the remainder (24–10%). Modern bioclastic sediment produced within coastal ecosystems and delivered to the beach–dune system corresponds to 15–34% of total carbonate production.

Over a long period, modern bioclastic sediment produced in the nearshore carbonate factories has significantly contributed to the beach–dune system, forming a wide coastal wedge (85% of the total beach–dune system volume) and two extended dune fields (15% of the total beach volume).

The value of ecosystem services provided by *P. oceanica* (Vassallo et al., 2013) has mainly been associated with sediment retention by meadows. Our data can be considered as reference values for improving estimation of the value of the ecosystem service provided by *Posidonia oceanica* meadows in relation to beach sediment budgets.

The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has several implications for the adaptation of mixed and carbonate beaches to environmental changes, at both local and global levels.

The reduction or complete disappearance of the meadows due to local impacts would lead to the reduction of carbonate sediment production, with a consequent possible change in the beach sediment budget from positive (beach accretion) to negative (beach erosion).

Taking into account the sea level rise expected in the near future, the existing seagrass beds will be located at greater depth, with lower biogenic carbonate sediment production and transport from coastal ecosystems to the beach. The long time needed by *P. oceanica* meadows to colonise new areas will slow the rate of adaptation of such systems to the modified sea level conditions.

Data availability. Data are available at http://sk.oristano.iamc.cnr.it/maps/285 (De Falco et al., 2017).

The Supplement related to this article is available online at https://doi.org/10.5194/bg-14-3191-2017-supplement.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We are grateful to the director of the Penisola del Sinis Isola di Mal di Ventre MPA for providing the boat for sampling. George Metcalf revised the English text.

Edited by: Christoph Heinze
Reviewed by: Mark Rowe and one anonymous referee

References

