Articles | Volume 14, issue 10
https://doi.org/10.5194/bg-14-2675-2017
https://doi.org/10.5194/bg-14-2675-2017
Technical note
 | 
29 May 2017
Technical note |  | 29 May 2017

Technical Note: A minimally invasive experimental system for pCO2 manipulation in plankton cultures using passive gas exchange (atmospheric carbon control simulator)

Brooke A. Love, M. Brady Olson, and Tristen Wuori

Related subject area

Biogeochemistry: Greenhouse Gases
Meteorological responses of carbon dioxide and methane fluxes in the terrestrial and aquatic ecosystems of a subarctic landscape
Lauri Heiskanen, Juha-Pekka Tuovinen, Henriikka Vekuri, Aleksi Räsänen, Tarmo Virtanen, Sari Juutinen, Annalea Lohila, Juha Mikola, and Mika Aurela
Biogeosciences, 20, 545–572, https://doi.org/10.5194/bg-20-545-2023,https://doi.org/10.5194/bg-20-545-2023, 2023
Short summary
Carbon emission and export from the Ket River, western Siberia
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022,https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Evaluation of wetland CH4 in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022,https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
Saúl Edgardo Martínez Castellón, José Henrique Cattanio, José Francisco Berrêdo, Marcelo Rollnic, Maria de Lourdes Ruivo, and Carlos Noriega
Biogeosciences, 19, 5483–5497, https://doi.org/10.5194/bg-19-5483-2022,https://doi.org/10.5194/bg-19-5483-2022, 2022
Short summary
Temporal patterns and drivers of CO2 emission from dry sediments in a groyne field of a large river
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022,https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary

Cited articles

Brutemark, A., Engström-Öst, J., Vehmaa, A., and Gorokhova, E.: Growth, toxicity and oxidative stress of a cultured cyanobacterium (sp.) under different CO2/pH and temperature conditions, Phycol. Res., 63, 56–63, https://doi.org/10.1111/pre.12075, 2015.
Buckham, S.: Ocean acidification affects larval swimming in Ostrea lurida but not Crassostrea gigas, Thesis, Western Washington University, available from: http://cedar.wwu.edu/wwuet/451/ (last access: 10 December 2016), 2015.
Cornwall, C. E. and Hurd, C. L.: Experimental design in ocean acidification research: problems and Solutions, ICES J. Mar. Sci., 73, 572–581, 2015.
Cripps, G., Flynn, K. J., and Lindeque, P. K.: Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency, PLoS One, 11, e0151739, https://doi.org/10.1371/journal.pone.0151739, 2016.
Christmas, A. M.: Effects of ocean acidification on dispersal behavior in the larval stage of the Dungeness crab and the Pacific Green Shore crab, Western Washington University, available from: http://cedar.wwu.edu/wwuet/306/ (last access: 10 December 2016), 2013.
Download
Short summary
This experimental system simulates future CO2 conditions in the ocean. It mimics natural processes by allowing the CO2 to move gently and across the surface of the water though gas exchange, making it well suited for delicate plankton. Researchers can use many small vessels, which allows tracking of the eggs from individual females, for instance. Multiple types of organisms can be grown at once, which facilitates feeding studies and other similar studies of species interactions.
Altmetrics
Final-revised paper
Preprint