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Abstract. The vehicles that fly the satellite into a model of
the Earth system are observation operators. They provide the
link between the quantities simulated by the model and the
quantities observed from space, either directly (spectral radi-
ance) or indirectly estimated through a retrieval scheme (bio-
geophysical variables). By doing so, observation operators
enable modellers to properly compare, evaluate, and con-
strain their models with the model analogue of the satellite
observations. This paper provides the formalism and a few
examples of how observation operators can be used in com-
bination with data assimilation techniques to better ingest
satellite products in a manner consistent with the dynamics
of the Earth system expressed by models. It describes com-
monalities and potential synergies between assimilation and
classical retrievals. This paper explains how the combination
of observation operators and their derivatives (linearizations)
form powerful research tools. It introduces a technique called
automatic differentiation that greatly simplifies both the de-
velopment and the maintenance of code for the evaluation
of derivatives. Throughout this paper, a special focus lies on
applications to the carbon cycle.

1 Introduction

Earth system models (ESMs) are complex software that cap-
ture our knowledge of how the ocean, atmosphere, land, and
ice operate and interact. ESMs provide scientists with pow-
erful tools to better understand our global environment, its
evolution, and the potential impact of human activities (e.g.

analyses of relevant processes, and their interaction and feed-
back mechanisms). ESM applications range from numerical
weather prediction (NWP), to seasonal or decadal forecasting
(see e.g. Stockdale et al., 2011; Smith et al., 2013), to climate
projections on centennial scales (IPCC, 2014) or even longer
(Jungclaus et al., 2010).

Before being used for predictions, ESMs and their com-
ponents should be confronted with observations in order to
assure their realism (validation). Such validation procedures
can be extended to standardized assessments of model per-
formance in so-called benchmarking systems by evaluation
of a set of observation-based metrics (see e.g. Blyth et al.,
2011; Luo et al., 2012). This involves the definition of met-
rics that quantify the model performance through the fit to
observations. A further step towards the rigorous use of the
observations is their ingestion in formal data assimilation
procedures, e.g. to constrain the model’s initial state (initial-
ization) or tunable parameters in the model’s process repre-
sentations (calibration).

Such confrontation with observations is hampered by the
fact that observed and modelled quantities typically differ
in nature or scale (in space and time). For example, a flask
sample of the atmospheric carbon dioxide concentration pro-
vides a value at a specific point in space and time, whereas
an atmospheric tracer model operates in a discretized rep-
resentation of space and time, i.e. on values that refer to a
box in the atmosphere and a particular period of time. Any
comparison of the two quantities (modelled and observed)
must hence take the uncertainty arising from this represen-
tation error into account (see e.g. Heimann and Kaminski,
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Figure 1. Schematic of an ESM assessing several data types via
observation operators H1,. . . ,Hn.

1999). Another example is a vertical profile of the ocean
temperature and salinity provided by a floating buoy (see
http://www.argo.ucsd.edu). Again the spatial scales of the
observation and the model do not match (in the horizontal di-
mension). In addition, ocean models are formulated in terms
of potential temperature rather than temperature. Since we
can only compare quantities of the same nature, some form
of transformation is required before any comparison can take
place. Such a difference in nature is intrinsic to observations
from space, where the raw quantities measured by satellites,
i.e. photon counts (Mathieu and O’Neill, 2008), are by nature
only indirectly (through radiative transfer processes) related
to the model quantities of interest.

The link from the model to the observations is provided
through a set of relationships expressed in terms of an obser-
vation operator. We can think of an observation operator as
an arm that enables the ESM to access a particular type of
observation (see Fig. 1). We stress that the usage of the term
operator is not meant to imply the linearity of the observation
operator. In fact, observation operators range in complexity
from a simple interpolation or integral scheme up to a chain
of sophisticated non-linear radiative transfer models.

The layout of the remainder of this paper is as follows.
Section 2 introduces the concept of an observation operator
and presents examples. The role of observation operators in
applications is presented in Sect. 3. Section 4 highlights the
use of derivatives of observation operators and introduces au-
tomatic differentiation, a technique to provide these deriva-
tives. Finally, Sect. 5 draws conclusions.

2 Observation operators

2.1 Definition

Mathematically, the observation operator is defined as map-
ping H from the vector of state variables z (of the model)
onto the vector of observations y:

H : z 7−→ y. (1)

The observation vector can include, for example, observed
radiances, radar backscatter, or in situ observations. The vec-
tor of the model’s state variables (state vector) defines the
simulated system for a given time step at all points in space,
and the evolution of the system is described by a sequence
of state vectors forming a trajectory through the state space.
We note that Eq. (1) may be generalized in the sense that
the simulation of observations of temporal averages or inte-
grals (e.g. an increment in above-ground biomass over sev-
eral years or an albedo covering several weeks) may require
not only a single state, but also the trajectory over the aver-
aging/integration interval. The state variables of a dynamical
model are also called prognostic variables, to contrast them
with diagnostic variables, which are computed from the state
and evolve only indirectly through the evolution of the state.
For example, the albedo of the land surface is diagnosed from
the state of the vegetation–soil system. Hence, if we achieve
a change in the model state at any given point in time, the
model will then propagate this change of state forward in
time, and we achieve a change of the model trajectory (e.g.
to improve the fit to observations). This means that to bring
observational information into the model, we must link the
observations to the state; in other words, the model’s state
vector constitutes the interface between the model and the
observation operator.

The solid path in Fig. 2 sketches how an observation oper-
ator (H1) enables the comparison of simulated and observed
values at the sensor level, i.e. at the level of spectral radi-
ances, typically referred to as level 1 data products (Arvid-
son et al., 1986). Another way to make Earth observation
(EO) data accessible to dynamical models is by deriving, by
means of a retrieval algorithm, a biogeophysical variable (in
the following denoted as a geophysical variable) from the
satellite observations. Such EO products are usually called
level 2 data products (and level 3 refers to products on a
space–time grid). Internally, the retrieval algorithm also re-
lies on a functional relationship that maps the geophysical
variable(s) of interest onto the spectral radiance. This map-
ping is similar, if not identical to, the observation operator
H1, although the term used by the EO community is forward
model. The retrieval can be regarded as an inversion of H1.
As the examples below will illustrate, the retrieved level 2
product will typically not exactly coincide with a component
of the model state vector. Hence, the confrontation of level 2
data with the model (the dotted path in Fig. 2) also requires
an observation operator (denoted by H2).
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Figure 2. Model–data comparison at the sensor level (level 1, solid arrows) and at the level of geophysical variables (level 2, dotted arrows).
Ovals denote data, and rectangles denote some form of processing.

2.2 Examples

Figure 3 attempts to sketch a generic observation operator
H1, which links a model’s state vector to observed spectral
radiance. For the sake of clarity, the figure focuses on pro-
cessing steps that map one variable onto another and omits
further important steps that involve transformations in space
and time, i.e. interpolation, averaging, or orbit simulation.

The simulation of spectral radiances at the sensor level re-
quires information from the atmosphere and the land/ocean
surface, including the description of ice or snow covers.
Hence, the observation operator typically consists of various
modules. First, from the model state, the relevant electro-
magnetic signatures are simulated. For example, for a pas-
sive optical sensor observing the terrestrial vegetation, this
would be the reflected sunlight, and it would be computed
by a model of the radiative transfer within the canopy; for
examples, see Pinty et al. (2006) or Loew et al. (2014). For
a passive microwave sensor that observes sea ice and snow,
this would be the thermal emission, and it would involve a
model of the radiative transfer within the sea ice and snow-
pack (see e.g. Wiesmann and Mätzler, 1999; Tonboe et al.,
2006). In the atmosphere, this could be a model for the emis-
sivity of clouds as a function of the atmospheric state. The
next step covers the path through the atmosphere from the
observed components to the sensor and requires a model of
the radiative transfer through the atmosphere. Prime exam-
ples are the Radiative Transfer for the TIROS Operational
Vertical Sounder (RTTOV; Eyre, 1991; Saunders et al., 1999)
for the microwave and infrared domain, the Second Simula-
tion of a Satellite Signal in the Solar Spectrum, 6S (Vermote
et al., 1997), for the solar domain, or the optimal spectral
sampling (OSS) method (Moncet et al., 2008). The output of
the radiative transfer model can be compared with a level 1
product.

Each type of observation requires its own observation op-
erator in order to be accessible to a model. The complexity of
the observation operator typically reflects a compromise be-

tween the accuracy required for the application at hand and
the available computational resources. In a space mission,
the observation operator depends on characteristics such as
the geometry of the observation (as a function of the orbit
of the platform) or the measuring principle and therefore the
spectral sensitivity of the sensor. The observation operator
also depends on the formulation of the dynamical model.
One aspect is the state space, which depends on the model
formulation. For example, an atmospheric model can either
diagnose clouds or include them in the state space (Chevallier
et al., 2004). In the former case, the diagnostic cloud model is
part of the observation operator; in the latter, it is not. Even
though parts of an observation operator are usually model-
dependent, it is desirable to implement the observation op-
erator in a modular form with carefully designed interfaces.
This modularity maximizes the flexible use and reuse for as-
similation and retrievals and the adaptation to new models or
observations; i.e. it ensures multifunctionality.

The crucial role of observation operators is reflected in
comparison exercises, such as the radiation transfer model
intercomparison (RAMI) initiative for the transfer of radi-
ation in plant canopies and over soil surfaces (Pinty et al.,
2001; Widlowski et al., 2007, 2013, 2015). A similar ac-
tivity for the atmosphere is the international project Inter-
comparison of 3-D Radiation Codes (I3RC) (Cahalan et al.,
2005). The I3RC focuses on the interaction of solar and
thermal radiation with cloudy atmospheres. Another activity
in this domain is the Cloud Feedback Model Intercompari-
son Project (CFMIP), which has set up the CFMIP Obser-
vation Simulator Package (COSP) (Bodas-Salcedo, 2011).
The modular package includes a set of observation opera-
tors that map model output consisting of “vertical profiles
of temperature, humidity, hydrometeor (clouds and precipi-
tation) mixing ratios, cloud optical thickness and emissivity,
along with surface temperature and emissivity” onto a set of
level 2 products retrieved from “the following instruments:
CloudSat radar, CALIPSO lidar, ISCCP, the MISR, and the
Moderate Resolution Imaging Spectroradiometer (MODIS)”
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Figure 3. Generic scheme of an observation operator for spectral
radiance. Oval boxes denote data, and rectangular boxes denote pro-
cessing.

(Bodas-Salcedo, 2011). The above-mentioned “fast radiative
transfer code RTTOV can also be linked to COSP to pro-
duce clear-sky brightness temperatures for many different
channels of past and current infrared and passive microwave
radiometers” (Bodas-Salcedo, 2011). Not only does COSP
greatly simplify the comparison of model output with EO
products, but using standardized interfaces also allows the
comparison of multiple models through the same observa-
tion operators with EO data from various sources; this fa-
cilitates the attribution of a model–data mismatch to aspects
of the model, the observation operator, or the observations.
The Community Microwave Emission Modelling Platform
(CMEM; Drusch et al., 2009) takes a similar role for the
modelling of the emissivity of the canopy–soil system in the
spectral domain from 1 to 20 GHz. For example, de Ros-
nay et al. (2009) use 12 different configurations of the mod-
ular system in their Land Surface Models Intercomparison
Project (ALMIP).

3 Applications of observation operators

This section starts with an introduction of the formalism be-
hind advanced data assimilation and retrieval schemes. The
details of the formalism are useful to understand the applica-
tion examples in this section (and the commonalities between
assimilation and retrievals) and the need for derivative infor-
mation that is discussed in Sect. 4.

3.1 Formalism of data assimilation and retrieval

Data assimilation is a procedure to combine the informa-
tion from observations with the information in a dynami-
cal model. There is a range of data assimilation techniques
with varying degrees of sophistication. The simplest tech-
niques try to replace a component of the model state vector
with an observation or, more precisely, some average of the
two. More advanced approaches can assimilate observations
y that are linked to the state through an observation opera-
tor H , which can be an observation operator for in situ data
or for EO data; for example, the operators H1 and H2 in-
troduced in Sect. 2 (see Eq. 1 and Fig. 3). The assimilation
problem is typically formalized as a minimization problem
for a misfit function

J (x)=
1
2
(H(x)− y)TU−1

y (H(x)− y)

+
1
2

(
x− xpr

)TC−1
xpr
(
x− xpr

)
, (2)

where x denotes the vector of unknowns. Even though in
some applications this vector of unknowns may coincide
with the model state, z, this is not generally the case (as will
be discussed below), and we need to make a clear distinction
between the both objects.

The function J (x) is composed of two terms. The first
term quantifies the misfit between the observations and their
simulated counterpart (observational term). Uy has to ac-
count for the uncertainty in the observations and the uncer-
tainty imposed by the imperfection of the model, including
the above-mentioned representativeness in space and time.
For diagonal Uy (uncorrelated uncertainty), it reduces to a
least squares fit to observations. The second term quantifies
the deviation of the model state from the prior information
xpr (prior term, also called background). This term provides a
means to include information in addition to the observational
information into the assimilation procedure, and it ensures
the existence of a minimum in cases where the observational
information is not sufficient to constrain the unknowns. Both
terms, observation misfit and prior, are weighted in inverse
proportion to the respective uncertainties, i.e. the combined
uncertainty in the observations and observation operator, Uy ,
and the uncertainty in the prior information, Uxpr. The super-
script T denotes transposition. Note that the equation does
not require the observations to be provided on the space–
time grid of the model. The observations can come in any
spatio-temporal distribution, e.g. the above-mentioned point
measurements or orbits, as long as we can formulate the ap-
propriate observation operator.

Equation (2) formalizes what in numerical weather pre-
diction is called three-dimensional variational assimilation
(3D-Var; Courtier et al., 1998); more precisely, it formalizes
its analysis step, which is then followed by a forecast step.
Operationally, the assimilation scheme is run in cyclic mode
through these two steps. In such a cyclic scheme, the prior in-
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formation is provided by the previous forecast; i.e. it is con-
sistent with the dynamical information from the model, and
at the same time it suffers from the errors in the model. In this
setup, the specification of the prior uncertainty is particularly
challenging (see e.g. Bannister, 2008a, b).

The model dynamics are even more emphasized when the
scheme of Eq. (2) is extended to contain observations yi at
different time steps (i =,1. . .,n) to constrain the initial state
z0 = x through

J (x)=
1
2

∑
i=1,n

(
H(zi(x))− yi

)TUyi

−1 (H(zi(x))− yi

)
+

1
2

(
x− xpr

)TUxpr
−1 (x− xpr

)
. (3)

This is the setup of the analysis step in four-dimensional vari-
ational assimilation (4D-Var) schemes, where the dynamical
model M is used as a constraint that links the states at all
observation times via

zi+1 =M(zi) (4)

to the initial state z0 = x. For convenience, the notation sup-
presses the time-dependent nature of H and M , and it also
assumes that the data uncertainties at different time steps
are uncorrelated. While 4D-Var solves a single minimization
problem to find a (dynamically consistent) model trajectory,
3D-Var is a sequential approach, i.e. it solves a sequence of
minimization problems, which that yield a dynamically in-
consistent sequence of model states. In operational NWP, as
mentioned above, the application of 4D-Var is in a cyclic pro-
cedure, i.e. also in a sequential manner. Section 3.2 will de-
scribe applications where this is not the case.

In the 4D-Var approach, the vector of unknowns x can be
extended from the initial state to boundary values and process
parameters (model calibration). Since these are external con-
trols to the dynamical system, x is also called control vector,
a term taken from control theory (Lions, 1971). We usually
try to select the control vector such that it comprises the fun-
damental unknowns of the system at hand, i.e. those with the
highest uncertainty (Kaminski et al., 2012b). An extension of
the 4D-Var approach (weak constraint 4D-Var) allows devia-
tions from the model trajectory, which are included as addi-
tional components into the control vector (see e.g. Zupanski,
1997).

The Kalman filter is another sequential approach. Its anal-
ysis step solves a slightly simplified form of Eq. (2), in which
H is replaced by its linearization H (Jacobian matrix) around
the prior. This allows an analytic solution xpo of Eq. (2)

xpo = xpr−UxpoHTUy
−1 (Hxpr− yi

)
, (5)

the evaluation of which involves the inversion of the matrix

Uxpo = (HTUy
−1H+Uxpr

−1)−1, (6)

which is typically of high dimension (e.g. 107 in NWP) and
expresses the uncertainty range in xpo that is consistent with
uncertainty ranges in the data and the prior values.

In the case of linear H and Gaussian probability densities
for the prior and the data, the solution of Eq. (2) is Gaus-
sian as well and therefore completely described by its mean
(Eq. 5) and covariance (Eq. 6). This formalism is, for exam-
ple, applied in inverse modelling of the atmospheric trans-
port of carbon dioxide (Enting, 2002), where an atmospheric
transport model takes the role of H and the space–time dis-
tribution of the surface fluxes takes the role of x. Note that
the cost function’s second derivative (Hessian matrix) J′′ is
related to Uxpo through

Uxpo = J′′(x)−1. (7)

In the non-linear case (i.e. H or M are non-linear), we
cannot solve Eq. (2) or Eq. (3) analytically, but via the cost
function’s Hessian we can use Eq. (7) to approximate Uxpo.
Via a linearization N of the model that links the control vari-
ables to model outputs of interest f , we can approximate the
uncertainty range of these model outputs Uf by

Uf = NUxpoNT. (8)

The alternative to the above assimilation approaches
(which are based on linearizations) are ensemble methods,
such as Markov chain Monte Carlo (see e.g. Metropolis et al.,
1953), ensemble Kalman filter (Evensen, 2003) techniques,
or particle filters (see e.g. van Leeuwen, 2009), which rely on
forward simulations to sample the control space. The feasi-
ble ensemble size is limited by the computational demands,
which are essentially determined by the complexity of the
underlying model. We also note the challenge of filter degen-
eracy that limits the applicability of particle filters to high-
dimensional problems (see e.g. Snyder et al., 2008).

We used Eq. (2) to introduce the formalism of data as-
similation. The same equation also plays a central role in re-
trievals. The minimization of Eq. (2) describes a retrieval al-
gorithm for the entire state. The prior term regularizes what
is otherwise an underdetermined inverse problem: several
of the unknown variables that influence the observed sig-
nal vary continuously with altitude (continuous vertical pro-
files). Even though we formulate our observation operators
on a vertical grid, there are typically “fewer” measurements
than unknowns. Consequently, there are many sets of un-
known variables that yield an equal fit to observations; i.e.
we have to deal with a non-zero null space (Tarantola, 2005).
The word fewer was put in quotation marks to indicate that,
more precisely, it is not only the ratio of the numbers of ob-
servations to unknowns that matters here, but it is also the ca-
pability of the observations to constrain the unknowns. The
null space is the subspace of the control space that is not
constrained by the observations, and including more obser-
vations of the same type often does not help to reduce the
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dimension of the null space. The prior term provides addi-
tional information on every unknown and helps the retrieval
algorithm to find a unique solution. Further, Eqs. (6) or (7)
are used to furnish the retrievals with uncertainty ranges.

Another perspective on the assimilation of level 1 data is
to regard it as an advanced form of retrieval, and to regard
the assimilation system as an advanced retrieval algorithm
that optimally combines the information from remote sens-
ing, radiative transfer, and dynamical model. The other point
to note is that H is usually not constant in space and time.
For example, the radiative transfer in the optical domain is af-
fected by atmospheric water vapour and aerosols. A retrieval
of a land surface variable, for example, requires information
on clouds and aerosols. In a coupled atmosphere–land model,
these data are available in a form that is dynamically consis-
tent with the state of the land surface; on the other hand, they
are also affected by errors in the model.

3.2 Data assimilation examples

The prime example of an atmospheric 4D-Var system is the
one (Rabier et al., 2000) operated at the European Centre for
Medium-Range Weather Forecasts (ECMWF) in their Inte-
grated Forecasting System (IFS; Courtier et al., 1998). The
4D-Var system has been in operation since 2003; meanwhile,
most of the assimilated observations are remotely sensed ra-
diances. Observations are provided by about 50 different sen-
sors and used with appropriate observation operators. The
system is used with a 12 h assimilation window to initialize
the operational forecast. Several other weather services (in-
cluding those of Canada, France, and the UK) are running
similar 4D-Var systems. A recent development at NWP cen-
tres are hybrid approaches that combine ensemble and vari-
ational approaches. Such a hybrid approach is operational at
ECMWF (Buizza et al., 2008; Isaksen et al., 2010; Bonavita
et al., 2012) and the NWP centres of the UK (Clayton et al.,
2013) and Canada (Buehner et al., 2010).

A prominent example of a variational ocean assimila-
tion system was set up around the MIT General Circula-
tion Model (MITgcm; Marshall et al., 1997) by the consor-
tium ECCO: Estimating the Circulation and Climate of the
Ocean (see http://www.ecco-group.org). The system (Stam-
mer et al., 2002) uses a combination of in situ observations
and level 2 or 3 remote-sensing products (including sea sur-
face height, sea surface temperature, wind stress, and geoid)
for ocean state estimation over decadal-scale assimilation
windows (Wunsch and Heimbach, 2006). Owing to these
long assimilation windows, the prescribed exchange fluxes
with the atmosphere are a major source of uncertainty in their
model trajectory. Hence, this boundary condition is included
in the control vector along with the initial state. Various ap-
plications of the assimilation product require closed prop-
erty budgets over the entire assimilation window, which are
achieved via variational approaches in contrast to sequential
approaches. Examples are mechanistic and diagnostic stud-

ies of climate variability or oceanic tracer transport problems
(Wunsch et al., 2009).

A recent example of a regional variational assimilation
system for the coupled ocean–sea-ice system in the northern
latitudes was developed by Kauker et al. (2015). This system
is operated for assimilation windows from a few weeks to a
few years. Their control vector combines (depending on the
application) the initial state, boundary conditions, and pro-
cess parameters. The system is constrained by hydrographic
in situ observations and level 2 and 3 products of sea surface
temperature, sea ice concentration, thickness, and displace-
ment.

An example of the global terrestrial vegetation is provided
by the Carbon Cycle Data Assimilation System (CCDAS).
Initially set up for the assimilation of in situ observations of
the atmospheric CO2 concentration (Rayner et al., 2005), the
system was extended step by step with observation operators
for several level 2 or 3 products, namely fraction of absorbed
photosynthetically active radiation (FAPAR) products (Knorr
et al., 2010; Kaminski et al., 2012a), the column-integrated
atmospheric carbon dioxide concentration (XCO2) (Kamin-
ski et al., 2010, 2016b), and the surface layer soil moisture
(Scholze et al., 2016). The observation operator for FAPAR
was a considerable extension of the previous system because
it required modules for the simulation of vegetation phenol-
ogy and hydrology, which were previously provided by an
offline calculation. The observation operators for CO2 and
XCO2 include models of the atmospheric transport that solve
the continuity equation for carbon dioxide (Heimann, 1995;
Heimann and Körner, 2003). The observation operator for
surface layer soil moisture was derived by modification of
the initial bucket formulation of the soil hydrology model
(which had no equivalent to the thin surface layer that is ob-
served from space). The assimilation window ranges from
years to decades. Considering uncertain values of the param-
eters (constants) in process formulations as the major source
of uncertainty in the model trajectory, the control vector is
composed of (depending on the setup) 50–100 (in extreme
cases up to 1000) process parameter values. This type of ap-
plication is called parameter estimation or model calibration.

3.3 Retrieval examples

The integrated retrieval of Toudal (1994) or Melsheimer
et al. (2009) solves simultaneously for geophysical variables
(level 2 data) of the atmosphere (wind speed, total water
vapour, cloud liquid water), the ocean (sea surface temper-
ature), and the sea ice (ice surface temperature, total sea ice
concentration, multi-year ice fraction). Technically, as H is
non-linear, Toudal (1994) and Melsheimer et al. (2009) use
Eq. (5) in an iterative procedure (xpo from one step is pro-
vided as xpr to the subsequent step), which recomputes H by
linearization around the current xpr. Upon convergence, they
deliver posterior uncertainties via Eq. (6). Their input values
are radiances (brightness temperatures) observed by the Ad-
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vanced Microwave Scanning Radiometer for EOS (AMSR-
E). Their prior values are taken from a range of sources, in-
cluding analysis data provided by an NWP assimilation sys-
tem, or separate univariate retrievals. This integrated retrieval
is performed individually for each observed point in space
and time at 12.5 km horizontal resolution. Although the use
of the same level 1 data in an assimilation system (ensur-
ing dynamical consistency between the atmosphere, ocean,
and sea ice components) appears desirable, it is highly chal-
lenging in various respects: from a software development
perspective, because it would require an assimilation system
built around a coupled atmosphere, ocean, and sea ice model;
from a computational perspective, because a single run of the
coupled model at 12.5 km resolution is already computation-
ally expensive, and an iterative assimilation scheme would
be more so.

An example of the land surface is the Joint Research Cen-
tre Two-stream Inversion Package (JRC-TIP) (Pinty et al.,
2007), which solves Eq. (2) for model parameters controlling
the radiation transfer regime in vegetation canopies, namely
the effective leaf area index (LAI) and the spectral scattering
properties of the vegetation and the soil. The latter informa-
tion is then used to compute the spectral fluxes scattered by,
absorbed in, and transmitted through the vegetation layer as
well the fluxes absorbed in the background (radiant fluxes).
Further, the system uses Eq. (7) to infer the uncertainty in the
retrieved parameters and Eq. (8) to propagate these forward
to uncertainties in the simulated radiant fluxes. In its typical
setup, the system uses observed albedos in two broad wave-
bands (visible and near infrared) (Pinty et al., 2007, 2011a,
b). The JRC-TIP is constructed around a one-dimensional
two-stream model, which takes three-dimensional radiative
transport effects into account (Pinty et al., 2006). As a con-
sequence, the retrieved vegetation parameters are effective
parameters (i.e. their values are only meaningful within this
model) and are determined such that the radiant fluxes are
simulated as accurately as possible. This illustrates a crucial
point when confronting retrieved level 2 variables with their
ESM counterparts. It is essential that the variables have the
same definition in the forward model that is used for the re-
trieval and in the observation operator that is used for its as-
similation. For the JRC-TIP products, this is the case for the
radiant fluxes and soil parameters; for the effective vegeta-
tion parameters, it requires the use of the same two-stream
model in the observation operator. An in-depth description
of JRC-TIP, its use for the generation of EO products, and
the validation of these products is provided by a dedicated
contribution to this special issue (Kaminski et al., 2016a).

The Earth Observation Land Data Assimilation System
(EO-LDAS, Lewis et al., 2012) is a retrieval and data as-
similation framework for various types of EO data. Primar-
ily, it uses a weak-constraint variational approach, i.e. the
weak constraint form of Eq. (3), in combination with a simple
model of the land surface dynamics (e.g. persistence), which
acts as a regularization in the spatial and temporal domains.

The system can, however, also perform single-pixel retrievals
or be operated in a sequential manner. EO-LDAS develop-
ment started for the optical domain with the semi-discrete
model of the vegetation canopy (Gobron et al., 1997) as ob-
servation operator. The system is being extended with fur-
ther observation operators, including the above-mentioned
CMEM for passive microwave observations. This means it
has the capability to simultaneously use EO over a range
of spectral domains and exploit their complementarity. To
achieve the computational performance necessary for global-
scale processing of high-resolution EO data, the system is
also operated (Gómez-Dans et al., 2016) with fast approx-
imations of radiative transfer (RT) models (including the
above-mentioned atmospheric RT code 6S) by so-called em-
ulators. A similar regularization strategy in the temporal do-
main was also presented by Lauvernet et al. (2008), who op-
erated a variational inversion scheme around a chain of cou-
pled RT models, i.e. PROSPECT (Jacquemoud and Baret,
1990) for the leaf optical properties, Scattering by Arbitrar-
ily Inclined Leaves, SAIL (Verhoef, 1984), for the canopy
RT, and the Simplified Method for Atmospheric Correction,
SMAC (Rahman and Dedieu, 1994), for the atmospheric RT.

A serious practical difficulty in data assimilation is the
specification of Uy . This is particulary relevant in multi-
data stream assimilation because Uy defines the respective
weights of the data streams. In the case of level 2 data, Uy is
the posterior uncertainty of the retrieval. Since the retrieval
is typically carried out point by point, uncertainty correla-
tions in space and time are difficult to assess. Another issue
is the data volume required by the uncertainty information.
For a product of a retrieved geophysical variable at n points
in space and time, Uy contains (taking its symmetry into ac-
count) n · (n+ 1)/2 different values, a volume that is usually
prohibitive in real-world applications. The challenge is to de-
velop ways of providing (approximations of) Uy that retain
the essential information in a minimal data volume. One ap-
proach is through appropriate variable transformations based
on a singular value decomposition of the observation op-
erator (Joiner and Da Silva, 1998; Migliorini, 2012). An-
other approach is a parametric model of Uy , for example,
as provided by Reuter et al. (2016) for the XCO2 product re-
trieved from Scanning Imaging Absorption Spectrometer for
Atmospheric CHartographY (SCIAMACHY) observations
through their Bremen Optimal Estimation DOAS (BESD;
Reuter et al., 2011) algorithm. Generally, the contribution by
the observational uncertainty Uy is certainly easier to specify
in the case of level 1 data. Their direct assimilation automat-
ically propagates, through the observation operator H1, the
full information content of Uy into the model.

A related topic is the consistency of the prior information
(xpr and Uxpr in Eq. 2) used in the retrieval scheme with the
scheme that subsequently uses these retrievals in a dynami-
cal model, e.g. for assimilation. Rodgers and Connor (2003)
demonstrate how the xpr used in the retrieval can be re-
placed with that simulated by the dynamical model, provided
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that the following are available: xpr and the so-called resolu-
tion operator (Backus and Gilbert, 1968) UxpoHTUy

−1H of
the retrieval (also called the averaging kernel), i.e. Eq. (5).
Chevallier (2015) goes one step further and addresses the re-
maining inconsistencies in Uxpr and highlights their effect in
his atmospheric transport inversion using retrievals of XCO2.
More generally, Migliorini (2012) derives requirements on
the retrieval such that the assimilation of the retrieved level 2
products is equivalent to the direct assimilation of level 1
products.

3.4 Observing system simulation experiments and
quantitative network design

Observing system simulation experiments (OSSEs) and
quantitative network design (QND) are two methodologies
that evaluate observation impact on assimilation systems.
Through an observing system or observational network, we
understand the superset of all observations that are made
available to an assimilation system. We only give a brief in-
troduction to the topic, as QND for the carbon cycle is ad-
dressed by another contribution to this special issue (Kamin-
ski and Rayner, 2017).

An OSSE (see e.g. Böttger et al., 2004; Masutani et al.,
2010; Timmermans et al., 2015) uses a model plus obser-
vation operators to simulate (in a model) analogues of ob-
servations that would be collected by a potential observing
system (often the current observing system extended by a
potential new data stream). The model is also used to sim-
ulate, in a so-called “nature run”, a surrogate of reality, i.e. a
reference trajectory over the period of investigation. Then an
assimilation–forecast system (preferably built around a dif-
ferent model) is used to evaluate some measure of the per-
formance of the potential observing system and its subsys-
tems. In NWP, the performance of an observing system is
usually quantified by the quality (skill) of a forecast from the
initial value that was constrained by the observation system.
Via this procedure one can, for example, assess the added
value of a planned mission in terms of an increment in fore-
cast skill. We also note a related approach, observing system
experiments (OSEs), which assess observation impact by re-
moving one or several existing data streams from the list of
observations used in a data assimilation system.

QND (for overviews, see Kaminski and Rayner, 2008,
2017) relies on the ability of an assimilation system to eval-
uate posterior uncertainties on target quantities of interest
via Eqs. (7) and (8). For a linear model, this propagation
of uncertainty is independent of the observational value; it
only depends (via Eqs. 7 and 3) on the data and prior un-
certainties, the sensitivity of the observations with respect to
the control variables, and (via Eq. 8) the sensitivity of the
target quantity f to the control variables. A first applica-
tion to mission design was presented by Rayner and O’Brien
(2001), who ran an atmospheric transport inversion system
built around a linear model of the atmospheric transport of

carbon dioxide in QND mode. They assessed the utility of re-
motely sensed carbon dioxide in constraining its CO2 fluxes.
Their benchmark was the in situ flask sampling network.
Kaminski et al. (2010) generalized the method to the above-
mentioned CCDAS and assessed the utility of XCO2 obser-
vations with an active lidar instrument. The performance of
the observing system is quantified by posterior uncertainty
of surface fluxes and compared to the performance of the in
situ network. Kaminski et al. (2012a) use CCDAS to assess
the performance of potential optical sensor configurations in
constraining the vegetation’s carbon and water fluxes. Their
benchmark was the MEdium Resolution Imaging Spectrom-
eter (MERIS) sensor. Another QND application (Kaminski
et al., 2015) evaluated airborne sampling strategies for sea
ice thickness and snow depth in the Arctic using simultane-
ous laser altimeter and snow radar observations.

For both approaches, OSSE and QND, the importance of
suitable observation operators is obvious. A disadvantage is
that the result depends on the model. Both techniques require
the specification of data uncertainties for the hypothetical
data streams to be evaluated.

4 Derivatives of observation operators

This section first summarizes how the capability to evalu-
ate derivatives of the observation operator is used in efficient
schemes for retrieval, assimilation, or QND. It then intro-
duces a technique for providing derivative information.

In variational assimilation, Eqs. (2) or (3) are typically
minimized in an iterative procedure that varies x. To do
this efficiently, even for high-dimensional control spaces, so-
called gradient algorithms are employed. They rely on the
capability of evaluating the gradient of J with respect to x

to define a search direction in the space of unknowns. The
gradient is useful because it yields the direction of steepest
ascent. For J (x) of Eq. (2), straightforward differentiation
with respect to x yields (see Sect. 3.4.4 of Tarantola, 2005)
the gradient

∇J (x)=H(x)TU−1
y (H(x)− y)+Uxpr

−1 (x− xpr
)
, (9)

and we see that its evaluation requires the capability to mul-
tiply the transpose of H with a vector. The uncertainty es-
timation via Eq. (7) based on J′′ additionally requires sec-
ond derivative information on H . This second derivative ex-
presses the curvature of (the components) of H , i.e. the
change of its linearization corresponding to a unit change of
x.

Likewise, the Kalman filter requires derivatives of H : in
Eq. (5), it multiplies the matrix H and its transpose with vec-
tors, and for the evaluation of Eq. (6) it needs to invert a ma-
trix that contains H and its transpose. One can do this inver-
sion by pre-computing H or by so-called matrix-free methods
that repeatedly multiply H and its transpose with vectors.
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As mentioned, advanced retrieval algorithms are based on
the same equations; i.e. they typically solve Eq. (2) either
via gradient methods or the (possibly repeated) application of
Eq. (5) and use either Eq. (7) or its approximation Eq. (6) to
estimate the posterior uncertainty. Hence, they benefit in the
same way from derivatives of H as data assimilation systems.
The same holds for QND schemes, which are based on the
computation of uncertainties via Eq. (7) or its approximation,
Eq. (6).

Traditionally, derivatives were approximated by multi-
ple forward runs (finite difference approximation) (see e.g.
Toudal, 1994; Melsheimer et al., 2009; Govaerts et al., 2010;
Dubovik et al., 2011). This discretized procedure has two dis-
advantages. The first is the limited accuracy of this gradient
approximation (providing only the linear term of the Taylor
series), which degrades the performance of the above-listed
algorithms. For example, incorrect gradient information will
slow down or prematurely stop the iterative minimization of
J , because gradient-based minimization algorithms rely on
the consistency of evaluations of J and its gradient. The other
disadvantage is that the computational cost of this approxi-
mation grows linearly with the length of the control vector.

Both disadvantages can be avoided by automatic differen-
tiation (AD; Griewank, 1989). AD is a procedure that gen-
erates source code for the evaluation of derivatives from the
code of the underlying function. In the current case, this func-
tion is the observation operator mapping the state variables
onto remote-sensing products. The function code is decom-
posed into elementary functions (such as +, −, sin(·)), for
which the derivative (local Jacobian) is straightforward to
derive. The derivative of the composite function is then con-
structed via the chain rule as the product of all local Jaco-
bians. According to the associative law, this multiple matrix
product can be evaluated in arbitrary order without chang-
ing the result. The tangent linear code (or tangent code) does
this evaluation in the same order as the function is evaluated,
which is called the forward mode of automatic differentia-
tion. The adjoint code uses exactly the opposite order, which
is called the reverse mode of automatic differentiation. Even
though both modes yield the same derivative, depending on
the dimensions of the function to be differentiated, there may
be large differences in their computational efficiency. The
CPU time required by the tangent code is proportional to the
number of the function’s input variables but independent of
the number of output variables. By contrast, the CPU time
required by the adjoint code is proportional to the number of
output variables and independent of the number of input vari-
ables. Both the tangent and adjoint codes use values from the
function evaluation (required values) (see e.g. Giering and
Kaminski, 1998; Hascoët et al., 2004). Providing required
values to the adjoint code is more complicated than to the
tangent code. As an application of the chain rule, AD pro-
vides derivatives that are accurate up to rounding error.

For variational assimilation, we require the derivative of
the scalar-valued cost function J (x) of Eqs. (2) and (3) with

respect to a usually high-dimensional vector x. For a state-
of-the-art model, only the adjoint can provide this derivative
with sufficient efficiency. A product Hv of H with a vector
v yields the directional derivative of H in the direction de-
fined by v, i.e. the derivative of the function H(x+ tv) of a
scalar independent variable t . Hence, this type of product is
evaluated most efficiently in forward mode, i.e. by the tan-
gent linear code of H . By contrast, a product of the form
HTv is the (transpose of the) derivative of the scalar-valued
function vTH(x), which is evaluated most efficiently in re-
verse mode, i.e. by the adjoint of H . The scalar forward and
reverse modes required for efficient evaluation of the above
Jacobian vector products are the standard forms of the deriva-
tive code. The scalar mode is contrasted by the vector mode.
In forward mode, the vector mode simultaneously computes
the sensitivities with respect to multiple input quantities, and
in reverse mode it simultaneously computes the sensitivity
of multiple output quantities. Experience shows that the vec-
tor mode is considerably more efficient than multiple runs in
scalar mode (see e.g. Kaminski et al., 2003). We use the vec-
tor mode for applications that require the entire Jacobian, H.
Here the sensible choice between forward and reverse modes
depends on the relative dimensions of state and observation
spaces.

A particular advantage of AD is that it can guarantee read-
ability and locality (Talagrand, 1991); i.e. every statement
in the derivative code belongs to a particular statement in the
function code. As a consequence, if the function code is mod-
ular, the same modularity is preserved in the derivative code.
Another important advantage of the AD approach is that it
simplifies the maintenance of the derivative code, because it
can be quickly updated after any modification of the function
code.

Since an AD tool operates at the code level, it is restricted
to a particular programming language. For the most fre-
quently used programming languages in Earth system sci-
ence, namely Fortran and C, AD tools are, however, avail-
able. It is a considerable effort to develop and maintain an
AD tool at a level robust enough for relevant scientific ap-
plications. Over the last decade, tool development has made
good progress, and there is a long list of successful AD ap-
plications to component models of the Earth system. A prime
example is the above-mentioned MITgcm, which is compli-
ant with multiple AD tools (Forget et al., 2015). Typically,
an initial effort is required to achieve the compliance of a
model with an AD tool. From this basis, maintaining com-
pliance for incremental updates of the model or the AD tool
is less demanding. This is, on the one hand, because AD tool
developers apply regression tests before each new release
against a set of benchmarking codes to preserve compliance
and; on the other hand, the incremental model updates typ-
ically respect the AD tool’s coding requirements. Examples
are limitations in the handling of pointers or memory allo-
cation/deallocation sequences. It should also be noted that
some AD tools allow the insertion of directives that support
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the analysis of the model code. These directives are helpful
(and sometimes necessary) to enhance the efficiency of the
generated code.

In some cases, analytical formulations of the derivative
can be derived and implemented with the observation opera-
tor (Moncet et al., 2008). Alternatively, the AD process can
be mimicked by hand (see e.g. Rabier et al., 2000; Weaver
et al., 2003; Moore et al., 2004; Kleespies et al., 2004; O’Dell
et al., 2006; Barrett and Renzullo, 2009); i.e. a human trans-
forms the function code line by line into derivative code fol-
lowing the same recipes (Giering and Kaminski, 1998) that
are implemented in AD tools. The advantage of hand-coding
derivatives is that a human can be more flexible than a soft-
ware tool. On the other hand, the hand-coding approach is
tedious and error prone. As a consequence, this approach re-
quires considerable development and maintenance effort and
is restricted to first derivatives. The large assimilation sys-
tems in the above list (Rabier et al., 2000; Weaver et al.,
2003; Moore et al., 2004) were set up before AD tools were
mature enough to handle the respective function codes.

Whether coded by hand or by an AD tool, the differen-
tiation process typically reveals issues in the function code
that are not apparent otherwise. A standard example is the
square root e.g. used in the computation of the norm, the
derivative of which tends to infinity as the argument tends
to 0. Infinite sensitivities were typically not intended when
the model code was designed, and we can regard a differ-
entiable reformulation as model improvement. A further ex-
ample is the introduction of a floor value of 0 to avoid neg-
ative values of the simulated ice-covered area. An obvious
implementation of this floor value as the maximum of the
simulated area and 0 produces a step in the derivative at 0.
Another example (now for the implementation as a mini-
mum) is the formulation of co-limitation in biogeochemical
models, in particular for carbon fixation in the photosynthe-
sis model of Farquhar et al. (1980). Kaminski et al. (2013)
and Schürmann et al. (2016) describe the replacement of
non-differentiabilities with smooth alternatives (including a
lookup table) in a model of the terrestrial biosphere. The han-
dling of similar non-differentiabilities in a crop model is de-
scribed by Lauvernet et al. (2012). In this context, it is helpful
that AD tools (see, for example, Pascual and Hascoët, 2008,
for C and Fortran) support the provision of derivative code
for external routines.

Xu (1996) discusses treatment non-differentiabilities in
NWP models through convection, precipitation, or clouds,
and Lorenc and Payne (2007) highlight the use of a statistical
variational concept of 4D-Var at a convective scale. Blessing
et al. (2014) explore the smoothing of non-differentiabilities,
in particular of the atmospheric component of an Earth sys-
tem model.

Typical formulations of leaf phenology rely on a number
of on–off switches that yield non-differentiable behaviour
and hamper the performance in a CCDAS. This problem was
addressed by Knorr et al. (2010) through the design of an

alternative phenology model that is based on a probabilis-
tic approach and takes spatial sub-grid variability into ac-
count. As a consequence, the model yields (more realistic)
smooth transitions instead of on–off behaviour and performs
well in CCDAS applications (Knorr et al., 2010; Kaminski
et al., 2012a; Schürmann et al., 2016). Our recommendation
is to consider the availability of the sensitivity information
as an additional perspective on the model and its implemen-
tation. One can benefit from this sensitivity information and
improve the modelling concept, as demonstrated for leaf phe-
nology by Knorr et al. (2010), or remove errors in the imple-
mentation as described by Kaminski et al. (2003).

5 Conclusions

EO products can only be accessed by Earth system models
via suitable observation operators. Hence, the careful design
of observation operators is essential to optimally exploit the
observational information. There are overlaps between ob-
servation operators used to confront dynamical models with
EO data (validation, benchmarking, assimilation) and for-
ward models used for retrievals of geophysical products. To
allow the most flexible use, observation operators should be
designed in modular form with carefully constructed inter-
faces. Several advanced retrieval algorithms and advanced
assimilation techniques (Kalman filter, 3D-Var, and 4D-Var)
rely on first derivatives (linearizations) of the observation op-
erators, i.e. their tangent and adjoint versions. The assess-
ment of uncertainties and quantitative network design addi-
tionally require second derivatives of observation operators.
To maximize their application range, these derivative codes
should be developed and maintained together with their un-
derlying observation operators. This procedure is, for ex-
ample, applied at the European Centre for Medium-Range
Weather Forecasts. Automatic differentiation (AD) provides
a means to minimize the development and maintenance ef-
fort for these derivative codes. There is an ever-increasing
list of successful AD applications to large-scale Earth system
science codes, including many observation operators. Mean-
while, there is a tendency among code developers to achieve
and preserve compliance with an AD tool and thus enhance
the functionality of their modelling system through the avail-
ability of derivative information. In the development of an
AD-compliant modelling or retrieval system, the system’s
sustainability can be maximized by the selection of a mature
AD tool that is permanently maintained by an experienced
development team and extended in response to the evolution
of user needs and programming languages. Close collabora-
tion with AD tool developers has proven beneficial in the ef-
ficient setup of robust AD-compliant systems for modelling
(see e.g. Rayner et al., 2005; Forget et al., 2015; Schürmann
et al., 2016; Kaminski et al., 2016b) or retrieval (see e.g.
Pinty et al., 2007; Lauvernet et al., 2008, 2012; Lewis et al.,
2012).
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