Corrigendum to

Richard Wehr and Scott R. Saleska
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, 85721, USA

Correspondence to: Richard Wehr (rawehr@email.arizona.edu)

Published: 23 October 2017

First, line 10 read

\[W_i = \alpha_i^2 / \left(b^2 \omega_{Y,i} + \omega_{X,i} - 2b \alpha_i \right) \]

but should have read

\[W_i = \alpha_i^2 / \left(b^2 \omega_{Y,i} + \omega_{X,i} - 2b \alpha_i \right) \]

Second, line 32 read

\[\bar{x} = \bar{x} / W_{sum} \]

but should have read

\[\bar{x} = \bar{x} / W_{sum} \]

The complete, corrected algorithm is

\[b = b_0. \]

While \(b_{diff} > T \) do

Begin loop

\[b_{old} = b \]
\[\bar{X} = 0 \] and \(\bar{Y} = 0 \) and \(W_{sum} = 0 \)

For i = 1, R step 1 do

Begin loop

\[\omega_{X,i} = 1/\sigma_{X,i}^2 \] and \(\omega_{Y,i} = 1/\sigma_{Y,i}^2 \]
\[\alpha_i = \sqrt{\omega_{X,i} \omega_{Y,i}} \]
\[W_i = \alpha_i^2 / \left(b^2 \omega_{Y,i} + \omega_{X,i} - 2b \alpha_i \right) \]
\[\bar{X} = \bar{X} + W_i X_i \] and \(\bar{Y} = \bar{Y} + W_i Y_i \)
\[W_{sum} = W_{sum} + W_i \]
End loop

\[\bar{X} = \bar{X} / W_{sum} \] and \(\bar{Y} = \bar{Y} / W_{sum} \)
\[Q_1 = 0 \] and \(Q_2 = 0 \)

For i = 1, R step 1 do

Begin loop

\[U_i = X_i - \bar{X} \] and \(V_i = Y_i - \bar{Y} \)
\[\beta_i = W_i \left[(U_i / \omega_{Y,i}) + (bV_i / \omega_{X,i}) - (bU_i + V_i) r_i / \alpha_i \right] \]
\[Q_1 = Q_1 + W_i \beta_i V_i \] and \(Q_2 = Q_2 + W_i \beta_i U_i \)
End loop

\[b = Q_1 / Q_2 \]
\[b_{diff} = |b - b_{old}| \]
End loop

\[a = \bar{Y} - b \bar{X} \]
\[\bar{x} = 0 \]

For i = 1, R step 1 do

Begin loop

\[x_i = \bar{X} + \beta_i \]
\[\bar{x} = \bar{x} + W_i x_i \]
End loop

\[\bar{x} = \bar{x} / W_{sum} \]
\[\sigma_b = 0 \] and \(\chi^2_b = 0 \)

For i = 1, R step 1 do

Published by Copernicus Publications on behalf of the European Geosciences Union.
Begin loop
\[
u_i = x_i - \bar{x}
\]
\[
\sigma_b = \sigma_b + W_i u_i^2
\]
\[
\chi_W^2 = \chi_W^2 + W_i (Y_i - bX_i - a)^2
\]
End loop
\[
\sigma_b = \sqrt{1/\sigma_b}
\]
\[
\sigma_a = \sqrt{\bar{x}^2 \sigma_b^2 + 1/W_{sum}}
\]
\[
\chi_W^2 = \chi_W^2 /(R-2)
\]
\[
\sigma_\chi = \sqrt{2/(R-2)}
\]