Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 14, issue 6
Biogeosciences, 14, 1593–1602, 2017
https://doi.org/10.5194/bg-14-1593-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 14, 1593–1602, 2017
https://doi.org/10.5194/bg-14-1593-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Mar 2017

Research article | 28 Mar 2017

Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model

Philipp Porada et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (29 Jan 2017) by Victor Brovkin
AR by Philipp Porada on behalf of the Authors (30 Jan 2017)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (31 Jan 2017) by Victor Brovkin
RR by Anonymous Referee #1 (03 Mar 2017)
ED: Publish subject to technical corrections (03 Mar 2017) by Victor Brovkin
Publications Copernicus
Download
Short summary
Lichens and bryophytes have been shown to release nitrous oxide, which is a strong greenhouse gas and atmospheric ozone-depleting agent. Here we apply a process-based computer model of lichens and bryophytes at the global scale, to estimate growth and respiration of the organisms. By relating respiration to nitrous oxide release, we simulate global nitrous oxide emissions of 0.27 (0.19–0.35) Tg yr−1. Moreover, we quantify different sources of uncertainty in nitrous oxide emission rates.
Lichens and bryophytes have been shown to release nitrous oxide, which is a strong greenhouse...
Citation