Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 13, issue 17
Biogeosciences, 13, 5085–5102, 2016
https://doi.org/10.5194/bg-13-5085-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: OzFlux: a network for the study of ecosystem carbon and water...

Biogeosciences, 13, 5085–5102, 2016
https://doi.org/10.5194/bg-13-5085-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Reviews and syntheses 13 Sep 2016

Reviews and syntheses | 13 Sep 2016

Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography

Caitlin E. Moore et al.

Related authors

Tree–grass phenology information improves light use efficiency modelling of gross primary productivity for an Australian tropical savanna
Caitlin E. Moore, Jason Beringer, Bradley Evans, Lindsay B. Hutley, and Nigel J. Tapper
Biogeosciences, 14, 111–129, https://doi.org/10.5194/bg-14-111-2017,https://doi.org/10.5194/bg-14-111-2017, 2017
Short summary
The contribution of trees and grasses to productivity of an Australian tropical savanna
Caitlin E. Moore, Jason Beringer, Bradley Evans, Lindsay B. Hutley, Ian McHugh, and Nigel J. Tapper
Biogeosciences, 13, 2387–2403, https://doi.org/10.5194/bg-13-2387-2016,https://doi.org/10.5194/bg-13-2387-2016, 2016
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Drought resistance increases from the individual to the ecosystem level in highly diverse Neotropical rainforest: a meta-analysis of leaf, tree and ecosystem responses to drought
Thomas Janssen, Katrin Fleischer, Sebastiaan Luyssaert, Kim Naudts, and Han Dolman
Biogeosciences, 17, 2621–2645, https://doi.org/10.5194/bg-17-2621-2020,https://doi.org/10.5194/bg-17-2621-2020, 2020
Short summary
An analysis of forest biomass sampling strategies across scales
Jessica Hetzer, Andreas Huth, Thorsten Wiegand, Hans Jürgen Dobner, and Rico Fischer
Biogeosciences, 17, 1673–1683, https://doi.org/10.5194/bg-17-1673-2020,https://doi.org/10.5194/bg-17-1673-2020, 2020
Short summary
Comparing stability in random forest models to map Northern Great Plains plant communities in pastures occupied by prairie dogs using Pleiades imagery
Jameson R. Brennan, Patricia S. Johnson, and Niall P. Hanan
Biogeosciences, 17, 1281–1292, https://doi.org/10.5194/bg-17-1281-2020,https://doi.org/10.5194/bg-17-1281-2020, 2020
Short summary
African biomes are most sensitive to changes in CO2 under recent and near-future CO2 conditions
Simon Scheiter, Glenn R. Moncrieff, Mirjam Pfeiffer, and Steven I. Higgins
Biogeosciences, 17, 1147–1167, https://doi.org/10.5194/bg-17-1147-2020,https://doi.org/10.5194/bg-17-1147-2020, 2020
Short summary
Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia
Jonathan R. Moore, Arthur P. K. Argles, Kai Zhu, Chris Huntingford, and Peter M. Cox
Biogeosciences, 17, 1013–1032, https://doi.org/10.5194/bg-17-1013-2020,https://doi.org/10.5194/bg-17-1013-2020, 2020
Short summary

Cited articles

Ahrends, H. E., Etzold, S., Kutsch, W. L., Stoeckli, R., Bruegger, R., Jeanneret, F., Wanner, H., Buchmann, N., and Eugster, W.: Tree phenology and carbon dioxide fluxes: Use of digital photography for process-based interpretation at the ecosystem scale, Clim. Res., 39, 261–274, 2009.
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., and McVicar, T. R.: Global changes in dryland vegetation dynamics (1988 to 2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data, Biogeosciences, 10, 6657–6676, https://doi.org/10.5194/bg-10-6657-2013, 2013.
Andrew, M. H. and Mott, J. J.: Annuals with transient seed banks: the population biology of indigenous Sorghum species of tropical north-west Australia, Aust. J. Ecol., 8, 265–276, 1983.
Barry, K., Corkrey, R., Stone, C., and Mohammed, C.: Characterizing eucalypt leaf phenology and stress with spectral analysis, in: Innovations in Remote Sensing and Photogrammetry, Lecture Notes in Geoinformation and Cartography, edited by: Jones, S. and Reinke, K., Springer, Berlin Heidelberg, 193–209, 2009.
Beringer, J., Hutley, L. B., Tapper, N. J., and Cernusak, L. A.: Savanna fires and their impact on net ecosystem productivity in North Australia, Glob. Change Biol., 13, 990–1004, 2007.
Publications Copernicus
Short summary
Australian vegetation phenology is highly variable due to the diversity of ecosystems on the continent. We explore continental-scale variability using satellite remote sensing by broadly classifying areas as seasonal, non-seasonal, or irregularly seasonal. We also examine ecosystem-scale phenology using phenocams and show that some broadly non-seasonal ecosystems do display phenological variability. Overall, phenocams are useful for understanding ecosystem-scale Australian vegetation phenology.
Australian vegetation phenology is highly variable due to the diversity of ecosystems on the...
Citation