Articles | Volume 13, issue 17
https://doi.org/10.5194/bg-13-5021-2016
https://doi.org/10.5194/bg-13-5021-2016
Research article
 | 
12 Sep 2016
Research article |  | 12 Sep 2016

Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms

Guoping Tang, Jianqiu Zheng, Xiaofeng Xu, Ziming Yang, David E. Graham, Baohua Gu, Scott L. Painter, and Peter E. Thornton

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (12 Aug 2016) by Trevor Keenan
AR by Anna Mirena Feist-Polner on behalf of the Authors (23 Aug 2016)  Author's response    Manuscript
ED: Publish as is (24 Aug 2016) by Trevor Keenan
Download
Short summary
We extend the Community Land Model coupled with carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) describes the observed pH evolution. Fe reduction can increase pH toward neutral pH to facilitate methanogenesis.
Altmetrics
Final-revised paper
Preprint