Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 13, 499-516, 2016
https://doi.org/10.5194/bg-13-499-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
25 Jan 2016
Ecosystem model-based approach for modeling the dynamics of 137Cs transfer to marine plankton populations: application to the western North Pacific Ocean after the Fukushima nuclear power plant accident
M. Belharet1,2, C. Estournel2, and S. Charmasson1 1Institut de Radioprotection et de Sûreté nucléaire, ENV-PRP/SESURE/LERCM, 83507, CS20330, La Seyne-Sur-Mer, France
2Laboratoire d'aérologie (LA), UMR5560, CNRS – Université de Toulouse, UPS, 14 avenue Edouard Belin, 31400 Toulouse, France
Abstract. Huge amounts of radionuclides, especially 137Cs, were released into the western North Pacific Ocean after the Fukushima nuclear power plant (FNPP) accident that occurred on 11 March 2011, resulting in contamination of the marine biota. In this study we developed a radioecological model to estimate 137Cs concentrations in phytoplankton and zooplankton populations representing the lower levels of the pelagic trophic chain. We coupled this model to a lower trophic level ecosystem model and an ocean circulation model to take into account the site-specific environmental conditions in the area. The different radioecological parameters of the model were estimated by calibration, and a sensitivity analysis to parameter uncertainties was carried out, showing a high sensitivity of the model results, especially to the 137Cs concentration in seawater, to the rates of accumulation from water and to the radionuclide assimilation efficiency for zooplankton. The results of the 137Cs concentrations in planktonic populations simulated in this study were then validated through comparison with the data available in the region after the accident. The model results have shown that the maximum concentrations in plankton after the accident were about 2 to 4 orders of magnitude higher than those observed before the accident, depending on the distance from FNPP. Finally, the maximum 137Cs absorbed dose rate for phyto- and zooplankton populations was estimated to be about 5  ×  10−2 µGy h−1, and was, therefore, lower than the predicted no-effect dose rate (PNEDR) value of 10 µGy h−1 defined in the ERICA assessment approach.

Citation: Belharet, M., Estournel, C., and Charmasson, S.: Ecosystem model-based approach for modeling the dynamics of 137Cs transfer to marine plankton populations: application to the western North Pacific Ocean after the Fukushima nuclear power plant accident, Biogeosciences, 13, 499-516, https://doi.org/10.5194/bg-13-499-2016, 2016.
Publications Copernicus
Download
Share