Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 13, issue 16
Biogeosciences, 13, 4777–4788, 2016
https://doi.org/10.5194/bg-13-4777-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 13, 4777–4788, 2016
https://doi.org/10.5194/bg-13-4777-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 24 Aug 2016

Research article | 24 Aug 2016

Iron-bound organic carbon in forest soils: quantification and characterization

Qian Zhao et al.
Related authors  
Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra
Martin Jiskra, Jeroen E. Sonke, Yannick Agnan, Detlev Helmig, and Daniel Obrist
Biogeosciences, 16, 4051–4064, https://doi.org/10.5194/bg-16-4051-2019,https://doi.org/10.5194/bg-16-4051-2019, 2019
Short summary
Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions
Christopher Pearson, Dean Howard, Christopher Moore, and Daniel Obrist
Atmos. Chem. Phys., 19, 6913–6929, https://doi.org/10.5194/acp-19-6913-2019,https://doi.org/10.5194/acp-19-6913-2019, 2019
Short summary
Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges
Yannick Agnan, Thomas A. Douglas, Detlev Helmig, Jacques Hueber, and Daniel Obrist
The Cryosphere, 12, 1939–1956, https://doi.org/10.5194/tc-12-1939-2018,https://doi.org/10.5194/tc-12-1939-2018, 2018
Short summary
Nutrient and mercury deposition and storage in an alpine snowpack of the Sierra Nevada, USA
C. Pearson, R. Schumer, B. D. Trustman, K. Rittger, D. W. Johnson, and D. Obrist
Biogeosciences, 12, 3665–3680, https://doi.org/10.5194/bg-12-3665-2015,https://doi.org/10.5194/bg-12-3665-2015, 2015
Short summary
Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites
P. Weiss-Penzias, H. M. Amos, N. E. Selin, M. S. Gustin, D. A. Jaffe, D. Obrist, G.-R. Sheu, and A. Giang
Atmos. Chem. Phys., 15, 1161–1173, https://doi.org/10.5194/acp-15-1161-2015,https://doi.org/10.5194/acp-15-1161-2015, 2015
Short summary
Related subject area  
Biogeochemistry: Soils
Spatial changes in soil stable isotopic composition in response to carrion decomposition
Sarah W. Keenan, Sean M. Schaeffer, and Jennifer M. DeBruyn
Biogeosciences, 16, 3929–3939, https://doi.org/10.5194/bg-16-3929-2019,https://doi.org/10.5194/bg-16-3929-2019, 2019
Short summary
Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019,https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Physical constraints for respiration in microbial hotspots in soil and their importance for denitrification
Steffen Schlüter, Jan Zawallich, Hans-Jörg Vogel, and Peter Dörsch
Biogeosciences, 16, 3665–3678, https://doi.org/10.5194/bg-16-3665-2019,https://doi.org/10.5194/bg-16-3665-2019, 2019
Short summary
Biological enhancement of mineral weathering by Pinus sylvestris seedlings – effects of plants, ectomycorrhizal fungi, and elevated CO2
Nicholas P. Rosenstock, Patrick A. W. van Hees, Petra M. A. Fransson, Roger D. Finlay, and Anna Rosling
Biogeosciences, 16, 3637–3649, https://doi.org/10.5194/bg-16-3637-2019,https://doi.org/10.5194/bg-16-3637-2019, 2019
Short summary
Past aridity's effect on carbon mineralization potentials in grassland soils
Zhenjiao Cao, Yufu Jia, Yue Cai, Xin Wang, Huifeng Hu, Jinbo Zhang, Juan Jia, and Xiaojuan Feng
Biogeosciences, 16, 3605–3619, https://doi.org/10.5194/bg-16-3605-2019,https://doi.org/10.5194/bg-16-3605-2019, 2019
Short summary
Cited articles  
Adhikari, D. and Yang, Y.: Selective stabilization of aliphatic organic carbon by iron oxide, Sci. Rep., 5, 11214, https://doi.org/10.1038/srep11214, 2015.
Adhikari, D., Poulson, S. R., Sumaila, S., Dynes, J. J., McBeth, J. M., and Yang, Y.: Asynchronous reductive release of iron and organic carbon from hematite–humic acid complexes, Chem. Geol., 430, 13–20, 2016.
Amelung, W., Flach, K. W., and Zech, W.: Climatic effects on soil organic matter composition in the great plains, Soil Sci. Soc. Am. J., 61, 115–123, 1997.
Amundson, R.: The carbon budget in soils, Annu. Rev. Earth Planet. Sc., 29, 535–562, 2001.
Axe, K. and Persson, P.: Time-dependent surface speciation of oxalate at the water-boehmite (gamma-AlOOH) interface: implications for dissolution, Geochim. Cosmochim. Ac., 65, 4481–4492, 2001.
Publications Copernicus
Download
Short summary
To mitigate the harmful effects of global climate change, it is essential to completely understand the cycles of carbon. In this study, we found the iron oxides play an important role in regulating the accumulation of carbon in forest soil, and uncovered the governing factors for the spatial variability and characteristics of iron-bound organic carbon. Such information is important for predicting the turnover of carbon in global soils.
To mitigate the harmful effects of global climate change, it is essential to completely...
Citation