1 Supplementary Discussion
1.1 Why were previous estimates of TER too high? 
1.1.1 Model parameterization
The (R)USLE model is widely used to spatially estimate rill and sheet erosion rates (topsoil erosion by water) at various scales. The model is a simple factorial model that can be written as: 

Where A is the annual rill and sheet erosion rate (t ha-1 yr-1); R is the rainfall erosivity factor (MJ ha-1h-1yr-1); K is the soil erodibility factor (t ha h ha-1 MJ-1 mm-1): L is slope length factor; S is the slope steepness factor; C is the cover management factor; P is the support practice factor.
The model has been shown to be successful in providing unbiased, reasonably accurate estimates of soil erosion rates measured on erosion plots, especially in the USA (Risse et al., 1993). However, applying the model in other environments at the landscape rather than the plot scale carries important risks. First, the parameter values derived from model guidelines may not be adequate for the area under study. Second, the extrapolation of erosion data from the plot to the landscape scale requires that the values of the topographical factors (slope gradient and length) are correctly calculated. 
It is not possible to examine the role of the various model parameters individually as they are all interrelated: an overestimation of rainfall erosivity may be compensated by an underestimation of soil erodibility and vice versa. However, one may assess whether the empirically derived values for a given parameter are indeed in agreement with model guidelines if other parameters are correctly calculated. We examined whether this was the case for soil erodibility. 
Soil erodibility (K factor)
Soil erodibility can be calculated from basic soil properties using a (set of) empirical equations relating the soil’s erodibility to the grain size distribution of the top soil layer, its organic matter content, its structure and/or its permeability using an empirical model proposed by Wischmeier and Smith (1978). Alternatively, soil erodibility can be directly calculated from measured soil erosion rates for a soil under so-called black fallow conditions, provided that rainfall erosivity is known. We found two studies were such a methodology was applied and made additional calculations for 41 plots in our database, located in different parts of the CLP where soils were maintained under black fallow conditions (Wang et al., 2013; Zhang et al., 2004)(6, 7). We found that soil erodibility factors that were directly derived from field measurements were, on average, 2 to 3 times lower than model-based estimates (Supplement Table 3). This confirms the result of an earlier study with a more limited dataset. Zhang et al. (2004) used a limited dataset (16 plots on 4 sites) to establish a simple model relating the soil erodibility to the soil’s clay content for the soils of CLP and found that K was strongly overestimated. This model was used by Fu et al. (2011) and provides more realistic estimates than the more general models used in other studies (Supplement Table 3). However, other studies (8)derived soil erodibility values from Wischmeier and Smith (1978)’s model, which at least partly explains why they obtained very high TER estimates (Schnitzer et al., 2013). 
Topography (LS factor)
The application of any erosion model on arable land requires knowledge of slope gradient and length: when the (R)USLE is used, this topographic information is used to calculate to so-called LS factor, which represents the relative average erosion rate to be expected on a parcel in comparison to the reference erosion rate measured on a 22.13 m long plot on a slope of 9%. Slope gradient values calculated from Digital Elevation Models (DEMs) are resolution-dependent, but these effects can easily be corrected for (Van Rompaey et al., 1999)(9). Calculating slope lengths for arable land using a DEM is more complicated. The calculation of slope length using topographic information only may result in significant overestimations of the slope length that is relevant for topsoil erosion. On the CLP, fields are only rarely so large that they cover an entire slope.  Fields often have different crops, and erosion processes will most often not occur on all fields simultaneously. As a result, slope lengths are in reality much more often limited by parcel boundaries than by natural topographical breaks. The relevant slope length is therefore the average field length, rather than the average topographic slope length. Ignoring this reality will lead to a significant overestimation of slope length and hence of topsoil erosion rates. We were not able to exactly reconstruct the calculation procedures used in previous studies, but it is clear that they yield widely divergent results. Schnitzer et al. (2013) arrive at an average LS factor of 11.90 for the whole CLP, while the application of the procedure proposed by Van Remortel et al. (2004), which uses topographical information only, results in an average value of 5.28 (Van Remortel et al., 2004). We calculated LS values for 307 terraced and non-terraced parcels in our GE sample dataset. These calculations resulted in an even lower value of 2.21 (2.67 for terraced land (note that this value does not account for the effects for terracing, which are incorporated in the P-factor) and 1.94 for non-terraced land). The overestimation of the LS factor is one of the main reasons why TER are overestimated when the (R)USLE is applied at the landscape scale. 
[bookmark: _GoBack]The second important reason why classical slope length calculations bias estimates of TER is that the dependency of TER on topography is fundamentally different on arable land in comparison to land under permanent vegetation. Empirical analyses consistently show that, when a significant permanent vegetation cover is present, TER does not systematically increase with slope length (Cammeraat, 2002; Cerdan et al., 2004)(10, 11). This finding was confirmed by our plot data analysis. The key reason for the absence of an erosion-slope length relationship is that the presence of permanent vegetation induces hydrological discontinuity in surface runoff (Dunne et al., 1991). While runoff is known to accumulate in the downslope direction on arable land, if most often does not so on land with permanent vegetation. On the latter, zones of lower infiltrability alternate with zones of high infiltrability, which absorb most of the runoff coming from upslope (Dunne et al., 1991). As surface runoff does not increase in the downslope direction, the TER does neither. Calculating erosion rates from data obtained on short plots and assuming that TER will increase with slope length if permanent vegetation is present will then inevitably lead to an overestimation of topsoil erosion under natural vegetation. 
Also, we did not find any relationship between slope gradient and TER under permanent vegetation. While the absence of such a relation may be due to an erosion-surface cover feedback, the latter would require that a significant rock fragment fraction is present in the soil (Govers et al., 2006)(12). This is not generally the case on the CLP. An alternative explanation is that, given the low runoff rates and the discontinuous nature of runoff, erosion under natural vegetation is mainly driven by splash detachment. Although the latter may be affected by slope gradient, it is far less so than detachment by overland flow. The weak slope dependency of raindrop detachment is likely to be smaller than the variability of erosion rates induced by other factors varying between plots such as total vegetation cover and vegetation pattern (Torri and Poesen, 1992). As a consequence, no meaningful pattern could be detected. 
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2 Supplementary Tables
Table 1. Soil loss reduction by terracing as reported in the literature: PY is the plot year; SFE is the sloping farmland plot erosion rate (t ha-1 yr-1); TFE is the terraced farmland plot erosion rate (t ha-1 yr-1), TE is the relative amount of TER measured on terraced land and is equal to TFE/SFE
	Reference
	PY
	SFE
	TFE
	TE

	(Wang et al., 2002)(20)
	8
	28.66
	7.15
	0.25

	(Zhang et al., 2008a)(21)
	3
	0.33
	0.19
	0.58

	(Xu et al., 2010)(22)
	5
	7.40
	3.49
	0.47

	(Shen et al., 2010)(23)
	4
	0.60
	0.30
	0.50

	(Cai, 2004)
	5
	1.17
	0.37
	0.32

	(Lu et al., 2009)(24)
	1
	20.33
	4.55
	0.22

	(Lu et al., 2009)(25)
	1
	32.92
	5.19
	0.16

	(Yang, 1999)(25)
	3
	155.70
	4.92
	0.03

	(Zhou, 2007)(26)
	2
	9.13
	0.19
	0.02

	(Chen et al., 2006)(27)
	2
	30.79
	0.77
	0.03

	(Chen et al., 2006)
	2
	42.25
	1.88
	0.04

	(Wu and Li, 1998)(29)
	4
	18.70
	1.00
	0.05

	(Zhang et al., 2008b)(30)
	9
	45.16
	2.11
	0.05

	(Fu et al., 2000)(31)
	3
	8.32
	0.53
	0.06

	(Fu et al., 2000)
	3
	28.56
	0.97
	0.03

	(Fu et al., 2000)
	3
	2.26
	0.24
	0.11

	Mean
	27.02±37.45
	2.12±2.23
	0.20±0.19
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Table 2. Comparison of measured and predicted erosion rates. Measurements are based on 137Cs inventories. Model predictions are based on the model developed in this study (Eq. 2): SL slope length (m); SD: slope degree (°); MeanCs: mean 137Cs inventory of the slope (Bq m-2); ReCs: reference 137Cs inventory (Bq m-2); ME: measured erosion rate (t ha-1 yr-1); PE: predicted erosion rate (t ha-1 yr-1).
	Sample year
	SL
	SD
	MeanCs
	ReCs
	ME
	PE
	Reference

	
	240
	19.7
	953.89
	2390
	57.97
	114.66
	(Chen et al., 2002)(32)

	1997
	37
	10.44
	2026.89
	2390
	10.54
	3.55
	(Li and Lindstrom, 2001)(33)

	1997
	180
	25
	827.75
	2390
	66.78
	139.24
	(Li and Lindstrom, 2001)(33)

	1998
	60
	8.68
	1502.52
	1761
	13.16
	17.60
	(Li et al., 2007)(34)

	1998
	200
	19.04
	891.99
	1761
	55.85
	99.50
	(Li et al., 2007)(34)

	2005
	50
	17
	824.6
	1582
	44.64
	41.98
	(Li et al., 2009)(35)

	2005
	90
	25
	587.34
	1582
	67.61
	98.46
	(Li et al., 2009)(35)

	
	43.8
	6.5
	
	
	1.3
	2.08
	(Quine et al., 1999)(36)

	
	8
	3.3
	
	
	0
	0.41
	(Quine et al., 1999)(36)

	1997
	110
	19.3
	316.46
	2250
	92.50
	75.30
	(Wang, 2003)(37)

	1997
	64
	18
	439.05
	2250
	77.43
	51.75
	(Wang, 2003)

	1997
	52
	18.2
	551.43
	2250
	66.85
	47.43
	(Wang, 2003)

	1997
	70
	22.6
	327.67
	2250
	90.90
	75.60
	(Wang, 2003)

	1997
	32
	25.4
	470.33
	2250
	74.24
	59.95
	(Wang, 2003)

	1997
	24
	21.9
	479.11
	2250
	73.38
	42.33
	(Wang, 2003)

	1997
	21
	6.4
	552.57
	2250
	66.75
	7.07
	(Wang, 2003)

	1997
	23
	13.1
	1160.5
	2250
	31.82
	19.33
	(Wang, 2003)

	1997
	70
	17.9
	162.15
	2250
	122.83
	53.67
	(Wang, 2003)

	1997
	52
	13.4
	610.67
	2250
	62.09
	30.04
	(Wang, 2003)

	1997
	33
	23
	168.05
	2250
	121.22
	53.21
	(Wang, 2003)

	1997
	37
	31.6
	611.69
	2250
	62.01
	82.93
	(Wang, 2003)

	1997
	8
	27.3
	629.9
	2250
	60.64
	32.83
	(Wang, 2003)

	1997
	105
	24.6
	573.45
	2250
	65.02
	104.08
	(Wang, 2003)

	1997
	30
	21.8
	641.58
	2250
	59.78
	47.01
	(Wang, 2003)

	1997
	103
	26
	537.86
	2250
	68.01
	110.84
	(Wang, 2003)

	1997
	15
	30
	257.92
	2250
	101.84
	50.07
	(Wang, 2003)

	1997
	39
	25.9
	1664.13
	2250
	14.57
	67.87
	(Wang, 2003)

	1997
	34
	17.8
	2089.61
	2250
	3.58
	37.09
	(Wang, 2003)

	1997
	29
	12.6
	2125.85
	2250
	2.75
	20.51
	(Wang, 2003)

	
	45
	14
	1930
	2676.5
	24.65
	29.81
	(Wu and Kou, 1997)(38)

	
	10
	1
	2640
	2676.5
	0.07
	0.15
	(Wu and Kou, 1997)

	
	100
	10
	1960
	2676.5
	23.2
	27.50
	(Wu and Kou, 1997)

	
	100
	1
	2270
	2676.5
	11.6
	2.41
	(Wu and Kou, 1997)

	1993
	24
	9.8
	1250
	2500
	37.68
	13.10
	(Zhang et al., 1997)(39)

	1993
	70
	18.3
	560
	2500
	80.26
	55.48
	(Zhang et al., 1997)

	1993
	23
	36
	440
	2500
	92.84
	73.04
	(Zhang et al., 1997)

	
	90
	10.5
	1070
	2540
	65.00
	27.90
	(Zhang et al., 1998)(40)

	
	48.3
	24
	
	2540
	87.10
	68.27
	(Zhang et al., 1998)

	
	76.6
	19.2
	
	2540
	82.80
	62.35
	(Zhang et al., 1998)

	
	61.1
	29
	
	2540
	94.90
	97.37
	(Zhang et al., 1998)(40)

	1992
	49.23
	23.98
	705.2
	2540
	71.32
	68.85
	(Zhang et al., 2002)(41)

	1992
	77.13
	19.11
	771
	2540
	66.46
	62.13
	(Zhang et al., 2002)(41)

	1992
	62.29
	28.94
	557.2
	2540
	84.09
	98.09
	(Zhang et al., 2002)(41)

	1992
	88.82
	11.21
	1068
	2540
	48.56
	30.38
	(Zhang et al., 2002)(41)
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Table 3. Comparison of estimated and measured soil erodibility values (K factor, t ha-1(MJ mm)-1 ha h) in CLP. Estimates are derived using the procedure proposed by Wischmeier and Smith (1978). Note that estimates are, on average, two to three times higher than measured values. 
	Estimated soil erodibility
	Measured soil erodibility

	Reference
	Range
	Mean
	Methods
	Reference
	PN
	Mean

	(Pan and Wen, 2013)(13)
	0.033-0.048
	0.041
	Forster (1991) (Foster et al., 1991)
	(Zhang et al., 2004)(6)
	17
	0.0163±0.0081

	(Li et al., 2006)(14)
	0.013-0.065
	0.039
	Torri (1997) (Torri et al., 1997)
	(Wang et al., 2013)(7)
	6
	0.0185±0.0079

	(Wang et al., 2007)(15)
	 
	0.043
	EPIC
	This study 
	41
	0.0142±0.0226

	(Pang et al., 2012)(16)
	0.032-0.052
	0.040
	EPIC
	
	 
	 

	(Qin et al., 2009)(17)
	 
	0.047
	Dg
	 
	 
	 

	(Fu et al., 2005)(18)
	0.016-0.032
	0.020
	RUSLE
	 
	 
	 

	(Gao et al., 2013)(19)
	0.034-0.043
	0.039
	EPIC
	 
	 
	 

	(Schnitzer et al., 2013)-RUSLE1
	0.006-0.119
	0.051
	EPIC
	
	
	

	(Schnitzer et al., 2013)-RUSLE2
	0.001-0.030
	0.013
	Zhang (2004) (Zhang et al., 2004) 
	
	
	

	Mean
	 
	0.04±0.031
	Mean
	 
	0.015±0.023


[bookmark: OLE_LINK7]


Table 4. Review of previous estimates of the contribution of gully erosion to total erosion in various catchments on the CLP: CAg is the proportion of gullied areas in the catchment (%); Hcs, Gcs and Dcs are the mean 137Cs inventories in the top-soil/sediment of inter-gully, gully and depositional areas, respectively (Bq kg-1); Scg is sediment contribution by gully erosion (%); Eg/h is the ratio of gully erosion to topsoil erosion. 
	Reference
	CAg
	HCS
	GCS
	DCS
	SCG
	Eg/Eh
	Method

	(Shi et al., 1997)
	-
	-
	-
	-
	68.63
	/
	sediment record

	(Feng, 2003)
	47.00
	5.30
	0.02
	0.98
	81.32
	4.90
	Cs-137

	(Yang et al., 2006)
	54.00
	-
	-
	-
	67.60
	1.77
	Cs-137

	(Zhang et al., 1997)
	47.00
	3.90
	0.02
	0.90
	77.00
	3.77
	Cs-137

	(Jing, 1986)
	-
	
	
	
	75.57
	/
	sediment record

	(Li et al., 2003)
	-
	5.86
	2.16
	3.37
	67.00
	/
	Cs-137

	(Li et al., 2003)
	-
	-
	-
	-
	60.00
	2.15
	sediment record

	(Jiao et al., 1992)
	50.00
	-
	-
	-
	60.00
	1.50
	literature reviews

	(Li et al., 2008)
	47.00
	5.83
	0.02
	1.36
	77.00
	3.78
	Cs-137

	(Li et al., 2008)
	33.00
	3.47
	0.02
	1.15
	67.00
	4.12
	Cs-137

	(Li et al., 2008)
	42.00
	3.15
	2.18
	2.86
	30.00
	0.59
	Cs-137

	(Li et al., 2008)
	41.60
	3.59
	0.00
	2.25
	37.00
	0.82
	Cs-137

	Mean ± STDEV
	45.20±6.53
	 
	 
	 
	64.01±19.02
	2.60±1.48
	 





Table 5 Topsoil (0-20 cm) content of  SOC, N and P  used in our study to estimate erosion-induced SOC, N and P mobilization (Liu et al., 2011, 2013).
	
	Farmland
	Grassland
	Forest
	Reference

	SOC (g kg-1)
	12.12 ± 7.48 (n=153)
	8.04 ± 4.68 (n=101)
	10.60 ± 7.48 (n=128)
	(Liu et al., 2011)

	N (g kg-1)
	0.81 ± 0.38 (n=153)
	0.58 ± 0.36 (n=101)
	0.77 ± 0.53 (n=128)
	(Liu et al., 2013)

	P (g kg-1)
	0.73 ± 0.26 (n=153)
	0.51 ± 15 (n=101)
	0.60 ± 0.22 (n=128)
	(Liu et al., 2013)
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