Articles | Volume 13, issue 15
https://doi.org/10.5194/bg-13-4429-2016
https://doi.org/10.5194/bg-13-4429-2016
Research article
 | 
09 Aug 2016
Research article |  | 09 Aug 2016

Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil

Xian Yang, Xiulian Chi, Chengjun Ji, Hongyan Liu, Wenhong Ma, Anwar Mohhammat, Zhaoyong Shi, Xiangping Wang, Shunli Yu, Ming Yue, and Zhiyao Tang

Abstract. Concentrations of leaf nitrogen (N) and phosphorus (P) are two key traits of plants for ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on the stoichiometric patterns of trees and grasses, leaving a significant knowledge gap for shrubs. In this study, we explored the intraspecific and interspecific variations of leaf N and P concentrations in response to the changes in climate, soil property, and evolutionary history. We analysed 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China encompassing 46.1° (86.7–132.8° E) in longitude and 19.8° (32.6–52.4° N) in latitude. Leaf N concentrations decreased with precipitation, while leaf P concentrations decreased with temperature and increased with precipitation and soil total P concentrations. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentrations were less conserved than leaf N concentrations. At the community level, climate explained more interspecific variation of leaf nutrient concentrations, while soil nutrients explained most of the intraspecific variation. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits. New patterns were discovered using our observations on specific regions and vegetation types, which improved our knowledge of broad biogeographic patterns of leaf chemical traits.

Download
Short summary
Leaf chemical concentrations are key traits in ecosystem functioning. Previous studies were biased for trees and grasses. Here, we explored the patterns of leaf N and P concentrations in relation to climate, soil, and evolutionary history in northern China. We found that climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits.
Altmetrics
Final-revised paper
Preprint