Supplement of

Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons

Jennifer R. Marlon et al.

Correspondence to: Jennifer R. Marlon (jennmarlon@gmail.com)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.
STEP 1 - PREPARE BASE FIGURES
rm(list=ls())
library(devtools)
library(paleofire)
library(GCD)

#install_github("paleofire","paleofire", ref="daily")
#load_all("~/Work/research/GPWG/paleofire/")

WORKING DIRECTORY
setwd('~/methods/charcoal/GCD v3.0 Paper figures/')

plotdata.file = './Data/All_GCDv1.1_rawplots_BB21k_2015-09-18.rds'
#plotdata.file = './Data/All_GCDv1.1_rawplots_BB1k_2015-09-18.rds'
TR.file = './Data/All_GCDv1.1_Transformed_BB21k.rds'
#TR.file = './Data/All_GCDv1.1_Transformed_BB1k.rds'
TR.mode = 0 #1 # 0==Run transformation, save result for later, 1==use saved data

Figure file name base.
- Can include a path (otherwise goes in working directory); all directories must exist.
- Year designation and file suffix will be added automatically
- Set to NULL to only print to screen

fig.base.name = './1perPg/GCDv3-SI-21k_'
fig.base.name = './1perPg/GCDv3-SI-1k_
fig.base.name = NULL # Use for paper figures

Base map ('coasts' or 'countries')
base.map = 'coasts'

Grid resolution and extent (in degrees)
grd.res = 5
grd.ext = c(-180,180,-90,90) # c(lonmin, lonmax, latmin, latmax)

Composite params
tarAge = seq(0,21000,1000) #increments = 1000 (Figs. 6 & 7 gridded maps)
tarAge = seq(-50,1050,100) #increments = 100
hw = 250 #10 (v3 Figs. 6 & 7 paper setting)
binhw = 500 #50 #20 (v3 Figs. 6 & 7 paper setting) ### THIS CHANGES THE MAP INTERVALS & FILE NAMES
n.boot = 1000 #1000 #(v3 Fig. 6 paper setting)

Dot size parameters
cx.mult = 1.5
cx.minsize = 0.4

Projection for maps
Unprojected
proj4 = "+proj=longlat"

Robinson
proj4 = "+proj=robin +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"

Gall-Peters equal-area projection
proj4 = "+proj=cea +lon_0=0 +lat_ts=45 +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs"

Lambert equal-area
proj4 = '+proj=laea +lat_0=30 +lon_0=0 +x_0=0 +y_0=0'

Mercator
proj4 = "+proj=merc +lon_0=0 +k_0=1 +x_0=0 +y_0=0"

------------------------ End Options
----- Make dir
if(!is.null(fig.base.name))
 dir.create(dirname(fig.base.name), recursive=T, showWarnings=F)

----- Transform records (slow, which is why TR.mode=1 is added)
if(TR.mode==0) {
 # New transform
 id = pfSiteSel() # Select all sites
 TR = pfTransform(id, method=c("MinMax","Box-Cox","Z-Score"),
 BasePeriod=c(200,21000),QuantType="INFL") #Fig. 6
 TR = pfTransform(id, method=c("MinMax","Box-Cox","Z-Score"),
 BasePeriod=c(200,1000),QuantType="INFL") #Fig. BB1k
 saveRDS(TR, file=TR.file)
} else {
 # load existing
 TR = readRDS(TR.file)
}

----- Run pfDotMap
dotmap = pfDotMap (TR=TR, tarAge=tarAge, binhw=binhw, hw=hw,
 n.boot=n.boot,
 fig.base.name=fig.base.name, base.map=base.map,
 grd.res=grd.res, grd.ext=c(-180,180,-90,90), proj4=proj4,
 cx.minsize=cx.minsize, cx.mult=cx.mult
)

saveRDS(dotmap, plotdata.file)

STEP 2 – MAKE PLOTS
rm(list=ls())
library(rgdal)
library(rworldmap)

setwd(~methods/charcoal/GCD v3.0 Paper figures/)
dotmap = readRDS('./Data/All_GCDv1.1_rawplots_BB1k_2015-08-18.rds')
outdir = './PaperFigs_pfCompositeLF/'
y.lim = c(-70,80)
x.lim = c(-180,180)

extract 1000-year slices desired
#grd = list(dotmap$sp.grd[[1]], dotmap$sp.grd[[7]], dotmap$sp.grd[[22]])
#site = list(dotmap$sp.sites[[1]], dotmap$sp.sites[[7]], dotmap$sp.sites[[22]])
n.bin = length(grd)
picked 1,6,11 first

#grd = list(dotmap$sp.grd[[1]], dotmap$sp.grd[[2]], dotmap$sp.grd[[11]])
#site = list(dotmap$sp.sites[[1]], dotmap$sp.sites[[2]], dotmap$sp.sites[[11]])
n.bin = length(grd)
Load base map
proj4 = proj4string(grd[[1]])
data(countriesCoarse) # A dataset in rworldmap used in the plots below
data(coastsCoarse) # An alternative base map. Needs one fix:
countriesCoarse = spTransform(countriesCoarse, CRS(proj4))
coastsCoarse = spTransform(coastsCoarse, CRS(proj4))

dir.create(outdir, recursive=T, showWarnings=F)
file.plot = paste0(outdir, 'Mean.pdf')
file.legend = paste0(outdir, 'Mean_v3_legend.pdf')

cols = c("#0571B0","#92C5DE","#F4A582","#CA0020") # modified from colorbrewer
cols = rev(c(rgb(1.000,0.250,0.000), rgb(1.000,0.501,0.144),
rgb(1.000,0.740,0.376), rgb(1.000,0.924,0.694), rgb(0.887,1.000,1.000),
rgb(0.607,0.918,1.000), rgb(0.376,0.792,1.000), rgb(0.194,0.630,1.000)))
cols = c(rgb(0,0,1), rgb(0.194,0.630,1), rgb(0.376,0.792,1), grey(0.95),
rgb(1,0.74,0.376), rgb(1,0.501,0.144), rgb(1,0,0))
cuts = c(-1.75,-1.25,-0.75,-0.25,0.25,0.75,1.25,1.75)
cuts = c(-1.5,-0.9,-0.3,0.3,0.9,1.5) # Defines range and resolution of color scale
cuts = c(-3,-1.8,-0.6,0,0.6,1.8,3) # Defines range and resolution of color scale
cx.sizes = c(0.75,1)

panel.labels = rep("","3") # c("Present","6 ka","21 ka")
grid.grey = grey(0.8)

mp = list()
for(i in 1:n.bin) {
 sp.grd = grd[[i]]

 # Assign symbol size based on whether CI contain 0
 cx = ifelse(sp.grd$CI.lower>0 | sp.grd$CI.upper<0, max(cx.sizes), min(cx.sizes))

 # The previous line will produce NA for cells with n=1 since CI are undefined. Give these "non-significant" symbol size by default.
 cx[which(sp.grd$sitesPerCell==1)] = min(cx.sizes)

 # Create plot object (actually plotted later)
 mp[[i]] =
spplot(sp.grd, 'mean.CHAR', xlim=x.lim, ylim=y.lim,
cuts=cuts, colorkey=T, col.regions=cols, cex=cx, edge.col=grey(0.7), lwd=0.1,
sp.layout=list(
 list("sp.lines",coastsCoarse,col=grid.grey,lwd=0.3),
 list("sp.polygons",countriesCoarse,col=grid.grey,lwd=0.3),
 list("sp.lines",gridlines(sp.grd),col=grid.grey, lwd=0.3),
 list("sp.text",c(-150,-50), panel.labels[i], fontface=2)),
par.settings=list(
 layout.widths=list(left.padding=3, right.padding=3),
 layout.heights=list(top.padding=-3, bottom.padding=-3)),
scales=list(alternating=0,tck=-0.5)
) # End spplot
if(i==1) mp.legend = mp[[i]]
mp[[i]]$legend = NULL
names(mp.legend$legend) = "bottom"
mp.legend$legend$bottom$args$key$space="bottom"

save.plot = T
if(save.plot) pdf(file.plot, width=17.5/2.54, height=11)
print(mp[[1]], position=c(0,0.635,1,0.905), panel.width=list(17.2,"cm"),
panel.height=list(17.5*0.42,"cm"), more=T)
print(mp[[2]], position=c(0,0.365,1,0.635), panel.width=list(17.2,"cm"),
panel.height=list(17.5*0.42,"cm"), more=T)
print(mp[[3]], position=c(0,0.095,1,0.365), panel.width=list(17.2,"cm"),
panel.height=list(17.5*0.42,"cm"), more=F)
if(save.plot) dev.off()

if(save.plot) {
 pdf(file.legend, width=20, height=5)
 print(mp.legend, position = c(0,0.0,1,1), panel.width=list(17.2,"cm"),
 panel.height=list(17.5*0.42,"cm"))
 dev.off()
}

----------------------------- NSITES PLOT -------------------------------
file.plot = paste0(outdir, 'Nsites.pdf')
file.legend = paste0(outdir, 'Nsites_legend.pdf')

cols = grey(0.2) # Can be replaced by a vector if different colors are desired

cuts = c(0.9,1.9,9.9,1000) # Where to divide symbol sizes
cx.legend = c("1", "2-9", "10+") # legend text
cx.key = c(0.3,0.4,0.5)
n.cx = length(cuts)-1 # number of bins represented
mp = list()
for(i in 1:n.bin) {
 sp.grd = grd[[i]]

 cx = cx.key[cut(sp.grd$sitesPerCell, cuts, labels=F)]

 # Create plot object (actually plotted later)
 mp[[i]] =
 spplot(sp.grd, 'sitesPerCell', xlim=x.lim, ylim=y.lim,
 cex=cx, cex.key=cx.key, legendEntries=cx.legend, cuts=cuts,
 col.regions=cols, edge.col="transparent",
 sp.layout=list(
 list("sp.lines",coastsCoarse,col=grid.grey,lwd=0.3),
 list("sp.polygons",countriesCoarse,col=gridgrey,lwd=0.3),
 list("sp.lines",gridlines(sp.grd),col=gridgrey, lwd=0.3),
 list("sp.text",c(-150,-50), panel.labels[i], fontface=2, cex=0.7)),
 par.settings=list(
 layout.widths=list(left.padding=-3, right.padding=-3),
 layout.heights=list(top.padding=-3, bottom.padding=-3)),
 scales=list(alternating=0,tck=-0.5)
)
 if(i==1) mp.legend = mp[[i]]
 mp[[i]]$legend = NULL
}

save.plot = T
if(save.plot) pdf(file.plot, width=8.5/2.54, height=5.3)

print(mp[[1]], position=c(0,0.635,1,0.905), panel.width=list(8.25,"cm"),
 panel.height=list(8.25*0.42,"cm"), more=T)
print(mp[[2]], position=c(0,0.365,1,0.635), panel.width=list(8.25,"cm"),
 panel.height=list(8.25*0.42,"cm"), more=T)
print(mp[[3]], position=c(0,0.095,1,0.365), panel.width=list(8.25,"cm"),
 panel.height=list(8.25*0.42,"cm"), more=F)
if(save.plot) dev.off()

if(save.plot) {
 pdf(file.legend, width=8.5/2.54, height=5)
 print(mp.legend, position = c(0,0,1,1), panel.width=list(8.25,"cm"),
 panel.height=list(8.25*0.42,"cm"))
 dev.off()
}
NSITES PLOT

file.plot = paste0(outdir, 'Ncells.pdf')
file.legend = paste0(outdir, 'Ncells_legend.pdf')

cols = grey(0.2) # Can be replaced by a vector if different colors are desired

cuts = c(0.9,1.9,3.9,100) # Where to divide symbol sizes

cx.legend = c("1", "2-3", "4+") # legend text

cx.key = c(0.3,0.4,0.5)

n.cx = length(cuts) - 1 # number of bins represented

ind.non0 = which(cx>0) # Don't want to change size 0 (== not plotted)
cx[ind.non0] = cx[ind.non0] + cx.minsize - min(cx[ind.non0])

mp = list()
for(i in 1:n.bin) {
 sp.site = site[[i]]

 cx = cx.key[cut(sp.site$cellsPerSite, cuts, labels=F)]

 # Create plot object (actually plotted later)
 mp[[i]] =
 spplot(sp.site, 'cellsPerSite', xlim=xlim, ylim=ylim,
 cex=cx, cex.key=cx.key, legendEntries=cx.legend, cuts=cuts,
 col.regions=cols, edge.col="transparent",
 sp.layout=list(
 list("sp.lines",coastsCoarse,col=grid.grey,lwd=0.3),
 list("sp.polygons",countriesCoarse,col=grid.grey,lwd=0.3),
 list("sp.lines",gridlines(sp.grd),col=grid.grey, lwd=0.3),
 list("sp.text",c(-150,-50), panel.labels[i], fontface=2, cex=0.7)),
 par.settings=list(
 layout.widths=list(left.padding=-3, right.padding=-3),
 layout.heights=list(top.padding=-3, bottom.padding=-3)),
 scales=list(alternating=0,tck=0.5))

)

 if(i==1) mp.legend = mp[[i]]
 mp[[i]]$legend = NULL
}

save.plot = T
if(save.plot) pdf(file.plot, width=8.5/2.54, height=5.3)

print(mp[[1]], position=c(0.0,0.635,1,0.905), panel.width=list(8.25,"cm"),
 panel.height=list(8.25*0.42,"cm"), more=T)
print(mp[[2]], position=c(0,0.365,1,0.635), panel.width=list(8.25,"cm"),
panel.height=list(8.25*0.42,"cm"), more=T)
print(mp[[3]], position=c(0,0.095,1,0.365), panel.width=list(8.25,"cm"),
panel.height=list(8.25*0.42,"cm"), more=F)
if(save.plot) dev.off()

if(save.plot) {
 pdf(file.legend, width=8.5/2.54, height=5)
 print(mp.legend, position = c(0,0,1,1), panel.width=list(8.25,"cm"),
panel.height=list(8.25*0.42,"cm"))
 dev.off()
}
Charcoal Influx z-Scores: 300−400 BP

Number of sites per grid cell

Number of grid cells influenced by each site

- 1
- 2−5
- 6−10
- 11−20
- >20
Charcoal Influx z-Scores: 400–500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 600–700 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 700–800 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 800–900 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 4500–5500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 6500–7500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 8500–9500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 9500–10500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 10500–11500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 11500–12500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 12500–13500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 13500–14500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 14500–15500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 15500–16500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 16500–17500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 17500–18500 BP

Number of sites per grid cell

Number of grid cells influenced by each site
Charcoal Influx z-Scores: 19500–20500 BP

Number of sites per grid cell

Number of grid cells influenced by each site

- 1
- 2–5
- 6–10
- 11–20
- >20

-2
-1
0
1
2
Charcoal Influx z-Scores: 20500–21500 BP

- Number of sites per grid cell
 - 1
 - 2–5
 - 6–10
 - 11–20
 - >20

- Number of grid cells influenced by each site
 - 1
 - 2
 - 3
 - 4
 - >4