Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 13, 3203-3223, 2016
https://doi.org/10.5194/bg-13-3203-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
02 Jun 2016
Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation
Gerhard Fischer1,2, Johannes Karstensen3, Oscar Romero2, Karl-Heinz Baumann1,2, Barbara Donner2, Jens Hefter2,4, Gesine Mollenhauer2,4, Morten Iversen2,4, Björn Fiedler3, Ivanice Monteiro5, and Arne Körtzinger3 1Geosciences Department, University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
2Marum Centre for Marine Environmental Sciences, Leobener Str., University of Bremen, 28359 Bremen, Germany
3GEOMAR Helmholtz Center for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
4Alfred Wegener Institute, Helmholtz Center for Polar and Marine Sciences, 27570 Bremerhaven, Germany
5Instituto Nacional de Desenvolvimento das Pescas (INDP), Cova da Inglesa, CP132, Mindelo, São Vicente, Cabo Verde
Abstract. Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439 m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 µmol kg−1 at 40 m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mg m−2 d−1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ∼ 15 and 13.3 mg m−2 d−1, respectively, were observed in February–March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/meso-pelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C : N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The δ15N record showed a decrease from 5.21 to 3.11 ‰ from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from ∼ 52 to 21.4 mg m−2 d−1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced “flux feeding” by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.

Citation: Fischer, G., Karstensen, J., Romero, O., Baumann, K.-H., Donner, B., Hefter, J., Mollenhauer, G., Iversen, M., Fiedler, B., Monteiro, I., and Körtzinger, A.: Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation, Biogeosciences, 13, 3203-3223, https://doi.org/10.5194/bg-13-3203-2016, 2016.
Publications Copernicus
Download
Short summary
Particle fluxes at the Cape Verde Ocean Observatory in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on deep sediment trap time-series data collected at 1290 and 3439 m water depths. The typically open-ocean flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen eddy in winter 2010. The eddy passage was accompanied by high biogenic and lithogenic fluxes, lasting from December 2009 to May 2010.
Particle fluxes at the Cape Verde Ocean Observatory in the eastern tropical North Atlantic for...
Share