Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 13, issue 10
Biogeosciences, 13, 3051–3070, 2016
https://doi.org/10.5194/bg-13-3051-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 13, 3051–3070, 2016
https://doi.org/10.5194/bg-13-3051-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 May 2016

Research article | 25 May 2016

High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

Daniela Franz1, Franziska Koebsch1, Eric Larmanou1, Jürgen Augustin2, and Torsten Sachs1 Daniela Franz et al.
  • 1Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
  • 2Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany

Abstract. Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.

Based on eddy covariance measurements we studied the ecosystem–atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.

The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m−2 a−1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m−2 a−1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9 years of rewetting the lake ecosystem exhibited a considerable C loss and global warming impact, the latter mainly driven by high CH4 emissions. We assume the eutrophic conditions in combination with permanent high inundation as major reasons for the unfavourable GHG balance.

Publications Copernicus
Download
Short summary
Based on the eddy covariance method we investigate the ecosystem–atmosphere exchange of CH4 and CO2 at a eutrophic shallow lake as a challenging ecosystem often evolving during peatland rewetting. Both open water and emergent vegetation are net emitters of CH4 and CO2, but with strikingly different release rates. Even after 9 years of rewetting the lake ecosystem exhibits a considerable carbon loss and global warming impact, the latter mainly driven by high CH4 emissions from the open waterbody.
Based on the eddy covariance method we investigate the ecosystem–atmosphere exchange of CH4...
Citation