Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse

Niels A. G. M. van Helmond¹, Appy Sluijs¹, Nina M. Papadomanolaki¹, A. Guy Plint², Darren R. Gröcke³, Martin A. Pearce⁴, James S. Eldrett⁵, João Trabucho-Alexandre⁴,⁶, Ireneusz Walaszczyk⁷, Bas van de Schootbrugge¹, and Henk Brinkhuis¹,⁸

¹Marine Palynology and Paleoceanography, Laboratory of Palaeobotany and Palynology, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
²Department of Earth Sciences, The University of Western Ontario, London, Ontario N6A 5B7, Canada
³Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE, UK
⁴Evolution Applied Ltd, 50 Mitchell Way, Upper Rissington, Cheltenham, Gloucestershire GL54 2PL, UK
⁵Shell International Exploration and Production Inc., Kesslerpark 1, 2288 GS Rijswijk, the Netherlands
⁶Comparative Sedimentology Group, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the Netherlands
⁷Institute of Geology, Faculty of Geology, University of Warsaw, Zwirki I Wigury 93, 02-089 Warsaw, Poland
⁸NIOZ, Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands

Correspondence to: Niels A. G. M. van Helmond (n.vanhelmond@uu.nl)

Received: 22 December 2015 – Published in Biogeosciences Discuss.: 29 January 2016
Revised: 21 April 2016 – Accepted: 4 May 2016 – Published: 13 May 2016

Abstract. Oceanic Anoxic Event 2 (OAE2), a ∼600 kyr episode close to the Cenomanian–Turonian boundary (ca. 94 Ma), is characterized by relatively widespread marine anoxia and ranks amongst the warmest intervals of the Phanerozoic. The early stages of OAE2 are, however, marked by an episode of widespread transient cooling and bottom water oxygenation: the Plenus Cold Event. This cold spell has been linked to a decline in atmospheric pCO$_2$, resulting from enhanced global organic carbon burial. To investigate the response of phytoplankton to this marked and rapid climate shift we examined the biogeographical response of dinoflagellates to the Plenus Cold Event. Our study is based on a newly generated geochemical and palynological data set from a high-latitude Northern Hemisphere site, Pratts Landing (western Alberta, Canada). We combine these data with a semi-quantitative global compilation of the stratigraphic distribution of dinoflagellate cyst taxa. The data show that dinoflagellate cysts grouped in the Cyclonephelium compactum–membraniphorum morphological plexus migrated from high to mid-latitudes during the Plenus Cold Event, making it the sole widely found (micro)fossil to mark this cold spell. In addition to earlier reports from regional metazoan migrations during the Plenus Cold Event, our findings illustrate the effect of rapid climate change on the global biogeographical dispersion of phytoplankton.

1 Introduction

The Cenomanian–Turonian boundary interval (ca. 94 Ma) was an episode of extreme warmth, with tropical and mid-latitude sea surface temperatures exceeding 35°C (e.g., Huber et al., 2002; Forster et al., 2007; Van Helmond et al., 2014a). This interval corresponds to Oceanic Anoxic Event 2 (OAE2), during which an increase in the production of organic carbon and a reduction in the oxygen content of seawater resulted in unusually high organic matter content of marine sediments (e.g., Schlanger and Jenkyns, 1976; Jenkyns, 1980). The OAE2 interval is stratigraphically marked by a positive carbon isotope excursion in all active carbon reservoirs, resulting from elevated organic carbon burial rates (e.g., Tsikos et al., 2004).

The early stages of OAE2 are characterized by a short-lived (ca. 40 kyr; Jarvis et al., 2011) colder interval as
Figure 1. Biozonation, lithology, Plenus Marl beds (Jefferies, 1963) and δ^{13}C$_{carb}$ (low-resolution data (dots and dotted line) derived from Pearce et al., 2009; high-resolution data (solid line) derived from Paul et al., 1999) for the Cenomanian–Turonian boundary reference section at Eastbourne, combined with occurrences of Boreal fauna (Gale and Christensen, 1996). On the right side the ranges of the different definitions for the Plenus Cold Event are indicated.
recorded in several marine paleotemperature records (e.g., Gale and Christensen, 1996; Forster et al., 2007; Sinninghe Damsté et al., 2010). It was first recognized as the co-occurrence of Boreal fauna with a positive oxygen isotope excursion of about 1.5%, recorded in biogenic calcite from beds 4–8 of the Plenus Marl in mid-latitude shelf sites of northwestern Europe (Gale and Christensen, 1996). This interval was termed the “Plenus Cold Event” (PCE; Fig. 1), after the Boreal belemnite Praeactinocamax plenus (Blainville). Subsequently, the PCE was restricted only to Bed 4 of the Plenus Marl, being the sole bed containing abundant Boreal fauna (Voigt et al., 2006; Fig. 1). Bed 4 corresponds precisely to the upper trough and second build-up of the carbon isotope excursion, the upper part of the Metoicoceras gelslinianum ammonite zone and basal Whiteinella archaeoceratæa planktonic foraminifer zone (Gale et al., 2005). More recently, Jarvis et al. (2011) extended the PCE down to beds 2 and 3 of the Plenus Marl (Fig. 1), based on a positive excursion in carbonate oxygen isotopes.

The PCE interval is characterized by a 3–7°C cooling of sea surface temperatures in the proto-North Atlantic and the European shelf (e.g., Forster et al., 2007; Sinninghe Damsté et al., 2010; van Helmond et al., 2014a, 2015). In several regions, such as the Western Interior Seaway (Eldrett et al., 2014) and proto-North Atlantic (e.g., Forster et al., 2007), the stratigraphic position of the PCE is characterized by minima in sediment organic carbon content and redox-sensitive element concentrations, which indicates improved oxygenation of bottom waters (e.g., van Helmond et al., 2014b). Furthermore, the stratigraphic position of the PCE coincides with a decline in atmospheric pCO$_2$ (e.g., Kuypers et al., 1999; Sinninghe Damsté et al., 2008; Barclay et al., 2010), which is thought to be a consequence of enhanced sequestration of organic carbon in sediments during the early stages of OAE2 (e.g., Barclay et al., 2010; Sinninghe Damsté et al., 2010). The incursion of Boreal fauna into lower latitudes has only been documented for the European shelf. A causal relation between pCO$_2$ drawdown, sea surface cooling, bottom water oxygenation and the PCE has been proposed (e.g., Forster et al., 2007; Sinninghe Damsté et al., 2010; Jarvis et al., 2011; van Helmond et al., 2014b).

Previously, it remained unclear as to whether the migration of Boreal fauna was related to a migration of multiple components of marine food webs. Recently, van Helmond et al. (2014a, 2015) showed that the first consistent presence (FCP; presence of multiple specimens in consecutive samples) of dinoflagellate cysts (dinocysts) belonging to the Cyclonephelium compactum–membraniphorum morphological plexus (Ccm; see below for a detailed discussion on taxonomic status) in two sections on the proto-North Atlantic and European shelf coincided with a cooling of sea surface temperatures at the stratigraphic level of the PCE. To test whether Ccm was truly a high-latitude taxon and whether widespread migration of these dinoflagellates occurred during the PCE, we studied a high-latitude site in northwestern Alberta, Canada (Pratts Landing), and compiled a global distribution of Ccm across OAE2, calibrated using biostratigraphy and carbon isotope stratigraphy.

2 Materials and methods

2.1 Stratigraphic setting of the Pratts Landing section

In northwestern Alberta and northeastern British Columbia, upper Cenomanian and Turonian strata of the Kaskapau Formation form a thick, mudstone-dominated and northeastward-thinning wedge that spans the foredeep of the Western Canada Foreland Basin (Varban and Plint, 2005). Well-exposed sections in the Rocky Mountain Foothills on the western margin of the foredeep can be correlated with sections in the Peace River Valley, located close to the forebulge. Correlation has been established by using abundant, publicly accessible wireline log data (Fig. 2). Detailed correlation through a grid of 756 wireline logs showed that 28 allomembers, bounded by marine flooding surfaces, could be mapped across the foredeep (Varban and Plint, 2005). In the western part of the foredeep, exemplified by the section at Mount Robert (Figs. 2, 3), nearshore and shoreface sandstones form stacked successions that prograded only 20–40 km seaward from the preserved basin margin; shoreface progradation was limited by a consistently high rate of flexural subsidence (Varban and Plint, 2005, 2008). Traced eastward from Mount Robert, successive allomembers become thinner and finer-grained, and some allomembers (e.g., allomembers 7, 9, 10) pinch out completely before reaching outcrop in the Peace River Valley, exemplified by the section at Pratts Landing (Figs. 2, 3). The section at Pratts Landing, which is the focus of this study, is located on the northeastern bank of the Peace River (56°01′14″N, 118°48′47″W; Fig. 4) and comprises stacked silty- and sandier-upward successions, capped, at a prominent flooding surface, by weakly bioturbated, organic-rich claystones and silty claystones characterized by a very high radioactivity (i.e., boundary of allomembers 6 and 8; Figs. 3, 5). Outcrop spectral gamma ray profiles allow the Pratts Landing section to be correlated with confidence to nearby wireline logs (Fig. 3).

In the west, the Cenomanian–Turonian boundary was recognized at the top of Kaskapau allomember 6 at Mount Robert, based on the distribution of inoceramid bivalves (Fig. 3). At that section, late Cenomanian Inoceramus ex gr. pictus (Sowerby) is widely distributed through allomembers 2 to 6, whereas Mytiloides pueblensis (Walaszczyk and Cobban) is present 2 m above the allomember 6–7 contact, indicating that the lowest zone of the Turonian is present in the lower part of allomember 7 (cf. Kennedy et al., 2000). The upper bounding surface of allomember 6 can be traced, through well logs, for 220 km eastward to Pratts Landing, where it corresponds to the sharp basal surface of a gypsum-cemented silty claystone. That sharp surface, separating al-
lomembers 6 and 8, corresponds to an abrupt increase in radioactivity, and lies 25 cm below the first appearance of the early Turonian inoceramids *Mytiloides goppelensis* (Badillet and Sornay) and *Mytiloides kossmati* (Heinz; Figs. 3, 5). The wireline log correlation shows that, at Pratts Landing, all of allomember 7 is missing, and the earliest Turonian zone of *M. puebloensis* also appears to be unrepresented, emphasizing the hiatal character of the allomember 6–8 boundary (Fig. 3).

During the Late Cretaceous, the study site was located at \(\pm 56.1^\circ \text{N} \) (van Hinsbergen et al., 2015; paleolatitude.org), on the eastern flank of the foredeep, about 160 km from the contemporaneous western shoreline of the Western Interior Seaway (Varban and Plint, 2005, 2008). We generated carbon isotope and dinoflagellate cyst data across about 23 m of upper Cenomanian to lower Turonian strata, based on stable carbon isotope stratigraphy and inoceramid biostratigraphy (Figs. 3, 6).

2.2 Stable isotope geochemistry

The carbon isotope composition of bulk organic carbon (\(\delta^{13}\text{C}_{\text{org}} \)) was measured at 20 cm intervals across OAE2 in order to constrain its exact position, and at 50 cm intervals for the remainder of the section. Analyses were performed in the Stable-Isotope Biogeochemistry Laboratory of the School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada. In total, 77 samples were treated with 3 N HCl to remove carbonates, rinsed with demineralized water, freeze-dried and powdered. Between 1 and 3 mg of powdered sediment sample was weighed in tin capsules and then put in a rotating carousel for subsequent combustion in an elemental analyzer. After purification of the gas sample it was passed through a SIRA II Series 2 dual-inlet isotope-ratio mass spectrometer to determine the stable carbon isotopic composition of organic matter. Carbon isotope ratios were measured against an international standard, NBS-21. The analytical reproducibility, based on replicate samples, was better than 0.1 ‰.

2.3 Palynological processing

Dinocyst abundances were determined for 21 samples, covering the entire section, using standard palynological methods. About 5 g of freeze-dried sediment was processed following a standardized quantitative method (e.g., Sluijs et al., Biogeosciences, 13, 2859–2872, 2016 www.biogeosciences.net/13/2859/2016/
Figure 3. Regional cross section (located in Fig. 2) showing how allomembers of the Kaskapau Formation can be correlated across the foredeep from Mount Robert to Pratts Landing. Cross section is condensed from more detailed lines in Varban and Plint (2005). The Cenomanian–Turonian boundary is shown as a broken line at the top of allomember 6. Note how allomember 7 laps out eastward onto allomember 6, and that both allomembers 6 and 8 become increasingly radioactive towards the east. Spectral gamma ray profiles taken at Pratts Landing confirm the correlation of the various stratal units at outcrop with their equivalents in subsurface. The inset stratigraphic logs show more detailed representations of the lithological successions, gamma ray profiles, and the distribution of inoceramid bivalves at Mount Robert and Pratts Landing. Detailed legend in Fig. 6.

2003), which involves the addition of a known amount of Lycopodium marker spores (Stockmar, 1971). To dissolve carbonates and silicates, HCl (~30%) and HF (~38%) were added, respectively. After centrifugation, acids were discarded. The remaining residues were sieved over a 15 µm nylon mesh and the >15 µm fraction was mounted on slides for analysis by light microscopy. Samples were counted to a minimum of 250 dinocysts, which were identified to genus or species level at 500× magnification, following the taxonomy of Fensome and Williams (2004). All samples and slides are stored in the collection of the Laboratory of Palaeobotany and Palynology, Utrecht University, the Netherlands. All data (δ13Corg and palynology) are listed in the Supplement (Table S1).
2.4 Taxonomy and literature survey

Originally the cysts *Cyclonephelium membraniphorum* (Cookson and Eisenack, 1962), which was renamed *Cauveridinium membraniphorum* (Masure in Fauconnier and Masure, 2004), were differentiated from *Cyclonephelium compactum* (Deflandre and Cookson, 1955), based on the generally higher and structurally ordered crests and membranes of *C. membraniphorum*. Additionally, cysts of *C. membraniphorum* form a series of funnel-shaped structures bordering unornamented mid-dorsal and mid-ventral areas. However, the apparent morphological variation regarding ornamentation within the two species exceeds the defined difference between the two species. Therefore, it was proposed to refer to the dinocyst morphological complex *Cyclonephelium compactum–membraniphorum*, rather than separating both species (Marshall and Batten, 1988). We agree that the two species are members of a morphological continuum and therefore group all these morphotypes of this continuum from our study site and the literature under the *Cyclonephelium compactum–membraniphorum* morphological plexus (*Ccm*) (Fig. 7; Table 1). For the compilation of the global biogeographical distribution of *Ccm* prior to, during and after OAE2, a literature survey was conducted.

3 Results and discussion

3.1 Dinocyst biogeography

At Pratts Landing the OAE2 interval is recorded between 10.2 and 16.8 m, based on a 2‰ positive shift in $\delta^{13}C_{org}$.
Table 1. Overview of the localities where cysts of *Cyclonephelium compactum–membraniphorum* morphological plexus (*Ccm*) have been reported across the Cenomanian–Turonian boundary interval. In the fourth and fifth column an “X” marks whether the first consistent presence (FCP) of *Ccm* was before OAE2 or whether it was associated with the first maximum in the positive carbon isotopic excursion (CIE), point “A” (cf. Voigt et al., 2008). Question marks indicate that the FCP could not be determined accurately, resulting from insufficient supporting information, e.g., high-resolution carbon isotope stratigraphy or unquantified abundances of *Ccm*. Localities further discussed in the article are in bold. WIS: Western Interior Seaway.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Region</th>
<th>Locality</th>
<th>FCP of Ccm prior to OAE2</th>
<th>FCP of Ccm associated with CIE-“A”</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>North America</td>
<td>WIS</td>
<td>Blue Point, Arizona, USA</td>
<td>X</td>
<td>Li and Hrib (1996), Harris and Tocher (2003)</td>
</tr>
<tr>
<td>2</td>
<td>North America</td>
<td>WIS</td>
<td>Shell Island, Texas, USA</td>
<td>X</td>
<td>Eldrett et al. (2014)</td>
</tr>
<tr>
<td>4</td>
<td>North America</td>
<td>WIS</td>
<td>Wahrweap Wash, Utah, USA</td>
<td>?</td>
<td>Harris and Tocher (2003)</td>
</tr>
<tr>
<td>6</td>
<td>Europe</td>
<td>European shelf</td>
<td>Lulworth, Dorset, UK</td>
<td>X</td>
<td>Dodsworth (2000)</td>
</tr>
<tr>
<td>7</td>
<td>Europe</td>
<td>European shelf</td>
<td>Culver Cliff, Isle of Wight, UK</td>
<td>X</td>
<td>Lignum (2009)</td>
</tr>
<tr>
<td>8</td>
<td>Europe</td>
<td>European shelf</td>
<td>Folkstone, Kent, UK</td>
<td>X</td>
<td>Jarvis et al. (1988), Lignum (2009)</td>
</tr>
<tr>
<td>9</td>
<td>Europe</td>
<td>European shelf</td>
<td>Eastern UK</td>
<td>?</td>
<td>Dodsworth (1996)</td>
</tr>
<tr>
<td>10</td>
<td>Europe</td>
<td>European shelf</td>
<td>Misburg, Lower Saxony, Germany</td>
<td>X</td>
<td>Marshall and Batten (1988)</td>
</tr>
<tr>
<td>11</td>
<td>Europe</td>
<td>European shelf</td>
<td>Norwegian Sea, Norway</td>
<td>X</td>
<td>Radmacher et al. (2015)</td>
</tr>
<tr>
<td>12</td>
<td>Europe</td>
<td>European shelf</td>
<td>Gröbern, Saxony Anhalt, Germany</td>
<td>X</td>
<td>Lignum (2009)</td>
</tr>
<tr>
<td>13</td>
<td>Europe</td>
<td>European shelf</td>
<td>Ratsteinebroch, Saxony, Germany</td>
<td>X</td>
<td>Lignum (2009)</td>
</tr>
<tr>
<td>14</td>
<td>Europe</td>
<td>European shelf</td>
<td>Pulawy, central Poland</td>
<td>X</td>
<td>Dodsworth (2004a)</td>
</tr>
<tr>
<td>15</td>
<td>Europe</td>
<td>European shelf</td>
<td>Nymphack, Central Bohemia, Czech Republic</td>
<td>?</td>
<td>Dodsworth (2004b)</td>
</tr>
<tr>
<td>16</td>
<td>Europe</td>
<td>European shelf</td>
<td>Aukseide, Crimea</td>
<td>?</td>
<td>Cech et al. (2005)</td>
</tr>
<tr>
<td>17</td>
<td>Europe</td>
<td>European shelf</td>
<td>Bois du Gallet, St.-Sylvestre-de-Cormeilles, Normandy, France</td>
<td>?</td>
<td>Tocher and Jarvis (1995)</td>
</tr>
<tr>
<td>18</td>
<td>Europe</td>
<td>European shelf</td>
<td>Les Fosses Blanches, Duneau, Maine, France</td>
<td>?</td>
<td>Tocher and Jarvis (1995)</td>
</tr>
<tr>
<td>19</td>
<td>Europe</td>
<td>European shelf</td>
<td>Canuga, Castilian Platform, Spain</td>
<td>?</td>
<td>Lamolda and Mao (1999)</td>
</tr>
<tr>
<td>20</td>
<td>Europe</td>
<td>European shelf</td>
<td>Puentedey, Castilian Platform, Spain</td>
<td>?</td>
<td>Peyrot et al. (2011)</td>
</tr>
<tr>
<td>21</td>
<td>Europe</td>
<td>European shelf</td>
<td>Fuenterooba, Castilian Plateau, Spain</td>
<td>?</td>
<td>Peyrot et al. (2011)</td>
</tr>
<tr>
<td>22</td>
<td>Europe</td>
<td>European shelf</td>
<td>Tamaion, Castilian Plateau, Spain</td>
<td>?</td>
<td>Peyrot et al. (2011)</td>
</tr>
<tr>
<td>23</td>
<td>Europe</td>
<td>European shelf</td>
<td>Condemos, Castilian Plateau, Spain</td>
<td>?</td>
<td>Peyrot et al. (2012)</td>
</tr>
<tr>
<td>24</td>
<td>Tethys</td>
<td>Ultrahelvetic Rehkogelgraben, Austria</td>
<td>?</td>
<td>Ploshina and Wagner (2012)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Tethys</td>
<td>Pont d’Islooe, Provence-Alpes-Côte d’Azur, France</td>
<td>X</td>
<td>Lignum (2009)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Tethys</td>
<td>Vergons, Provence-Alpes-Côte d’Azur, France</td>
<td>X</td>
<td>Courriérat et al. (1991), Lignum (2009)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Southern Hemisphere</td>
<td>Indian Ocean</td>
<td>Northwestern Australia</td>
<td>X</td>
<td>McMinn (1988)</td>
</tr>
<tr>
<td>29</td>
<td>Southern Hemisphere</td>
<td>Pacific Ocean</td>
<td>East Coast Basin, New Zealand</td>
<td>X</td>
<td>Hassaïwa et al. (2013), Schröler and Crampton (2014)</td>
</tr>
<tr>
<td>30</td>
<td>Southern Hemisphere</td>
<td>Pacific Ocean</td>
<td>Mangaotane Stream, Raukumara Peninsula, New Zealand</td>
<td>X</td>
<td>Crampton et al. (2001)</td>
</tr>
</tbody>
</table>
The Cenomanian–Turonian boundary is placed at 15.3 m, at the sharp base of a 20 cm thick, heavily gypsum-cemented silty claystone lacking macrofauna (Fig. 5). The base Turonian marker inoceramid species *Mytiloides pueblensis* was not found, but the succeeding inoceramid zone, characterized by *M. goppelnensis* and *M. kossmati*, starts approximately 25 cm above the basal surface (Fig. 3). *Ccm* is a general constituent (1–4 %) of the dinocyst assemblage at Pratts Landing throughout the section, i.e., also below the onset of OAE2 (Fig. 6).

All localities (n = 35) with reported cysts of *Ccm* (i.e., *Cauveridinium membraniphorum*, *Cyclonephelium membraniphorum*, *Cyclonephelium compactum* and/or *C. compactum–membraniphorum*) are listed in Table 1 and shown in Fig. 8. The first common presence (FCP) of *Ccm* could only be determined for 20 of the localities as a result of poor stratigraphic constraints and only qualitative reporting of *Ccm* at the other 15 localities.

Recent dinocyst biostratigraphic studies from the East Coast Basin, New Zealand, show that the FCP of *Ccm* was ca. 500 kyr before the onset of OAE2 (Schioeler and Crampton, 2014). At northern high latitudes, notably Pratts Landing and the Norwegian Sea (Radmacher et al., 2015), *Ccm* is a consistent constituent of the dinocyst assemblage throughout the late Cenomanian. In contrast, at most Northern Hemisphere mid-latitude sites, *Ccm* has not been reported before OAE2, with the exception of a few spot occurrences at Eastbourne and Iona-1 (Pearce et al., 2009; Eldrett et al., 2014). Crucially, *Ccm* was never a consistent constituent of mid-latitude dinocyst assemblages before OAE2. This indicates that *Ccm* had a high-latitude biogeographical distribution in both hemispheres before OAE2.

Five Northern Hemisphere shelf sites in Europe and North America, namely Pratts Landing, Iona-1 (southwestern Texas, USA), Bass River (New Jersey, USA), Eastbourne (East Sussex, UK) and Wunstorf (Lower Saxony, Germany), were selected to compare established biozonation, high-resolution records of δ^{13}C, and the relative abundances of *Ccm* (Fig. 9; Pearce et al., 2009; Eldrett et al., 2014; van Helmond et al., 2014a, 2015). Maximum relative abundances of *Ccm* (i.e., > 10 %) are recorded during the first maximum in the OAE2 characterizing carbon isotope excursion (point “A” – cf. Voigt et al., 2008), at Pratts Landing (Figs. 6, 9). At the same stratigraphic position, *Ccm* becomes abundant at several other Northern Hemisphere mid-latitude sites, for example the southern part of the Western Interior...
Seaway, the proto-North Atlantic shelf, the European shelf, and the Tethys (Figs. 8, 9; Table 1). Despite a spot occurrence at point “A”, the FCP of \(Ccm \) seems somewhat delayed at Eastbourne (i.e., Plenus Marl Bed 7 – Fig. 9; Pearce et al., 2009); this is a local phenomenon, because in other English Chalk sections (e.g., Dodsworth, 2000) the FCP of \(Ccm \) coincides with that of other Northern Hemisphere mid-latitude sites.

3.2 Ecology

At Bass River and Wunstorf the FCP of \(Ccm \) precisely correlates with a drop in sea surface temperature (van Helmond et al., 2014a, 2015), leading to the suggestion that the dinoflagellate taxon that produced \(Ccm \) migrated to these sites in response to climatic cooling. We therefore suggest that sea surface temperature was the primary control on the biogeo-

3.3 A new stratigraphic marker

Most of the Cretaceous is covered by the Normal Superchron C34n (ca. 126–84 Ma; Gradstein et al., 2012), hampering application of magnetostratigraphy. Stratigraphic correlation for the Cenomanian–Turonian boundary interval there-
fore relies on biostratigraphy and carbon isotope stratigraphy (Gale et al., 2005) as well as on recent advances in astrochronology (e.g., Meyers et al., 2012; Eldrett et al., 2015). Pelagic sediments are often carbonate-poor, because the calcite compensation depth was relatively shallow during OAE2, complicating planktonic foraminifer and calcareous nannofossil biostratigraphy (e.g., Erba, 2004). Consequently, carbon isotope stratigraphy is the main stratigraphic tool for OAE2 because the positive carbon isotope excursion is recognized in all active carbon reservoirs (Tsikos et al., 2004). Calibration of carbon isotope stratigraphy with bioevents is, however, essential to establish detailed stratigraphic frameworks.

The coincidence of the FCP of Ccm with the base of the W. archaeocretacea and the upper part of the M. geslinianum zones close to the first maximum in the positive carbon isotope excursion (point “A”; Fig. 9) suggests that dinoflagellate migration probably occurred within thousands to 10,000 years. The FCP of Ccm thus represents a useful biostratigraphic marker, being, to date, the only widely found microfossil to mark the PCE, except at high latitudes.

4 Conclusions

A global compilation of dinocyst assemblage records combined with new data from a high-latitude site spanning OAE2 illustrates the migration of dinoflagellates, which produced the dinocyst morphological complex Ccm, from high-latitudes to mid-latitudes during the early stages of OAE2 (latest Cenomanian). The first consistent presence of this taxon at mid-latitudes correlates with the stratigraphic position of the Plenus Cold Event, following its original definition by Gale and Christensen (1996), making it the sole widely distributed microfossil to mark this cold spell. The coincidence of the first consistent presence of Ccm in the mid-latitudes with this transient cooling implies lasting reorganization of phytoplankton biogeography in response to rapid climate change during the Late Cretaceous supergreenhouse. The migration of Ccm in response to climatic cooling resembles previously recognized dinoflagellate migration events during comparable periods of transient climate change, e.g., the Oligocene glaciations and the Paleocene–Eocene Thermal Maximum.

The Supplement related to this article is available online at doi:10.5194/bg-13-2859-2016-supplement.
Acknowledgements. This paper used data generated on sediments recovered and curated by the International Ocean Discovery Program (IODP). We thank Paul Dodsworth, Poul Schiøler and an anonymous reviewer for helpful comments and suggestions and J. van Tongeren and N. Welters for laboratory assistance. Utrecht University supported this research with a “Focus en Massa” program grant to Henk Brinkhuis. Statoil provided additional financial support. The European Research Council (ERC) under the European Union’s Seventh Framework Program provided funding for this work by ERC Starting Grant 259627 to Appy Sluijs. Regional studies of Cretaceous strata in western Canada were supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to A. Guy Plint. Darren R. Gröcke acknowledges funding by a UK Natural Environment Research Council (NERC) Standard Grant (NE/H021868/1). This work was carried out under the program of the Netherlands Earth System Science Centre (NESSC).

Edited by: C. Heinze

References

Kennedy, W. J., Walaszczky, L., and Cobb, W. A.: Pueblo, Colorado, USA, candidate Global Boundary Stratotype section and
Point for the base of the Turonian Stage of the Cretaceous, and for the base of the Middle Turonian Substage, with a revision of the Inoceramidae (Bivalvia), Acta Geol. Polon., 50, 295–334, 2000.

van Helmond, N. A. G. M., Sluijs, A., Sinninghe Damsté, J. S., Reichert, G.-J., Voigt, S., Erbacher, J., Pross, J., and Brinkhuis, H.: Freshwater discharge controlled deposition of Cenomanian-
Varban, B. L. and Plint, A. G.: Palaeoenvironments, palaeogeography, and physiography of a large, shallow, muddy ramp: Late Cenomanian-Turonian Kaskapau Formation, Western Canada foreland basin, Sedimentology, 55, 201–233, 2008.