Supplement of

Application of the 15N gas-flux method for measuring in situ N_2 and N_2O fluxes due to denitrification in natural and semi-natural terrestrial ecosystems and comparison with the acetylene inhibition technique

Fotis Sgouridis et al.

Correspondence to: Fotis Sgouridis (f.sgouridis@bristol.ac.uk)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.
Supplementary Table 1: Change of the soil volumetric water content (VWC) after the addition of the 15N-labelled tracer in each sampling plot in June and August 2013.

<table>
<thead>
<tr>
<th>Field Sites</th>
<th>Volume of soil water (cm3)</th>
<th>Added tracer volume (cm3)</th>
<th>Change in VWC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PB 1</td>
<td>5685</td>
<td>200</td>
<td>3.5</td>
</tr>
<tr>
<td>C-PB 2</td>
<td>4947</td>
<td>200</td>
<td>4.0</td>
</tr>
<tr>
<td>C-PB 3</td>
<td>4362</td>
<td>200</td>
<td>4.6</td>
</tr>
<tr>
<td>C-PB 4</td>
<td>4883</td>
<td>200</td>
<td>4.1</td>
</tr>
<tr>
<td>C-PB 5</td>
<td>4574</td>
<td>200</td>
<td>4.4</td>
</tr>
<tr>
<td>C-UG 1</td>
<td>3170</td>
<td>150</td>
<td>4.7</td>
</tr>
<tr>
<td>C-UG 2</td>
<td>3039</td>
<td>150</td>
<td>4.9</td>
</tr>
<tr>
<td>C-UG 3</td>
<td>2944</td>
<td>150</td>
<td>5.1</td>
</tr>
<tr>
<td>C-UG 4</td>
<td>3373</td>
<td>150</td>
<td>4.4</td>
</tr>
<tr>
<td>C-UG 5</td>
<td>2921</td>
<td>150</td>
<td>5.1</td>
</tr>
<tr>
<td>R-HL 1</td>
<td>4654</td>
<td>200</td>
<td>4.3</td>
</tr>
<tr>
<td>R-HL 5</td>
<td>4010</td>
<td>200</td>
<td>5.0</td>
</tr>
<tr>
<td>C-MW 1</td>
<td>1617</td>
<td>50</td>
<td>3.1</td>
</tr>
<tr>
<td>C-MW 2</td>
<td>1731</td>
<td>50</td>
<td>2.9</td>
</tr>
<tr>
<td>C-MW 3</td>
<td>1708</td>
<td>50</td>
<td>2.9</td>
</tr>
<tr>
<td>C-MW 4</td>
<td>1707</td>
<td>50</td>
<td>2.9</td>
</tr>
<tr>
<td>C-MW 5</td>
<td>1623</td>
<td>50</td>
<td>3.1</td>
</tr>
<tr>
<td>R-DW 1</td>
<td>2823</td>
<td>100</td>
<td>3.5</td>
</tr>
<tr>
<td>R-DW 2</td>
<td>2764</td>
<td>100</td>
<td>3.6</td>
</tr>
<tr>
<td>R-DW 3</td>
<td>2677</td>
<td>100</td>
<td>3.7</td>
</tr>
<tr>
<td>R-DW 4</td>
<td>2790</td>
<td>100</td>
<td>3.6</td>
</tr>
<tr>
<td>R-DW 5</td>
<td>2742</td>
<td>100</td>
<td>3.6</td>
</tr>
<tr>
<td>C-IG 1</td>
<td>2292</td>
<td>100</td>
<td>4.4</td>
</tr>
<tr>
<td>C-IG 2</td>
<td>2240</td>
<td>100</td>
<td>4.5</td>
</tr>
<tr>
<td>C-IG 3</td>
<td>2299</td>
<td>100</td>
<td>4.3</td>
</tr>
<tr>
<td>C-IG 4</td>
<td>2528</td>
<td>100</td>
<td>4.0</td>
</tr>
<tr>
<td>C-IG 5</td>
<td>2315</td>
<td>100</td>
<td>4.3</td>
</tr>
<tr>
<td>R-UG 1</td>
<td>2696</td>
<td>100</td>
<td>3.7</td>
</tr>
<tr>
<td>R-UG 2</td>
<td>2741</td>
<td>100</td>
<td>3.6</td>
</tr>
<tr>
<td>R-UG 3</td>
<td>2678</td>
<td>100</td>
<td>3.7</td>
</tr>
<tr>
<td>R-UG 4</td>
<td>2673</td>
<td>100</td>
<td>3.7</td>
</tr>
<tr>
<td>R-UG 5</td>
<td>2663</td>
<td>100</td>
<td>3.8</td>
</tr>
<tr>
<td>R-IG 1</td>
<td>2381</td>
<td>100</td>
<td>4.2</td>
</tr>
<tr>
<td>R-IG 2</td>
<td>2369</td>
<td>100</td>
<td>4.2</td>
</tr>
<tr>
<td>R-IG 3</td>
<td>2153</td>
<td>100</td>
<td>4.6</td>
</tr>
<tr>
<td>R-IG 4</td>
<td>2490</td>
<td>100</td>
<td>4.0</td>
</tr>
<tr>
<td>R-IG 5</td>
<td>2392</td>
<td>100</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Supplementary Table 2: Mineral NO$_3^-$-N, 15N-NO$_3^-$ amendment, the estimated enrichment of the total (ambient + tracer) soil nitrate pool in each field site in the June 2013 and August 2013 campaigns and the annual average soil nitrate pool enrichment in the same sites from 17 campaigns between April 2013 and October 2014.

<table>
<thead>
<tr>
<th>Field Sites</th>
<th>Ambient NO$_3^-$-N (kg ha$^{-1}$)</th>
<th>15N-NO$_3^-$ application (kg ha$^{-1}$)</th>
<th>Enrichment of total soil NO$_3^-$ pool (15N at %)</th>
<th>Average annual soil NO$_3^-$ pool enrichment (15N at %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PB</td>
<td>0.15</td>
<td>0.07</td>
<td>33.2</td>
<td>12.6</td>
</tr>
<tr>
<td>C-UG</td>
<td>0.04</td>
<td>0.03</td>
<td>40.2</td>
<td>15.4</td>
</tr>
<tr>
<td>C-MW</td>
<td>6.28</td>
<td>1.02</td>
<td>14.0</td>
<td>12.2</td>
</tr>
<tr>
<td>C-IG</td>
<td>3.73</td>
<td>0.87</td>
<td>18.8</td>
<td>10.9</td>
</tr>
<tr>
<td>R-HL</td>
<td>1.40</td>
<td>0.03</td>
<td>1.8</td>
<td>13.0</td>
</tr>
<tr>
<td>R-DW</td>
<td>1.44</td>
<td>0.21</td>
<td>12.7</td>
<td>10.3</td>
</tr>
<tr>
<td>R-UG</td>
<td>0.88</td>
<td>0.22</td>
<td>19.9</td>
<td>11.3</td>
</tr>
<tr>
<td>R-IG</td>
<td>0.82</td>
<td>0.44</td>
<td>34.7</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Supplementary Table 3: Comparison between the 15X$_N$ calculated from both the N$_2$ and the N$_2$O isotope ratio data using equation (2). SE = Standard Error.
<table>
<thead>
<tr>
<th>Field Sites</th>
<th>From N₂</th>
<th>From N₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PB 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-PB 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-PB 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-PB 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-PB 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-HL 1</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>R-HL 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean OS</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>C-MW 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-MW 2</td>
<td>0.63</td>
<td>0.84</td>
</tr>
<tr>
<td>C-MW 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-MW 4</td>
<td>0.58</td>
<td>0.79</td>
</tr>
<tr>
<td>C-MW 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-DW 1</td>
<td>0.76</td>
<td>0.71</td>
</tr>
<tr>
<td>R-DW 2</td>
<td>0.81</td>
<td>0.86</td>
</tr>
<tr>
<td>R-DW 3</td>
<td>0.92</td>
<td>0.86</td>
</tr>
<tr>
<td>R-DW 4</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>R-DW 5</td>
<td>0.80</td>
<td>0.82</td>
</tr>
<tr>
<td>Mean WL</td>
<td>0.77</td>
<td>0.82</td>
</tr>
<tr>
<td>SE</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>C-IG 1</td>
<td>0.93</td>
<td>0.84</td>
</tr>
<tr>
<td>C-IG 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-IG 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-IG 4</td>
<td>0.99</td>
<td>0.86</td>
</tr>
<tr>
<td>C-IG 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-UG 1</td>
<td>0.66</td>
<td>0.48</td>
</tr>
<tr>
<td>R-UG 2</td>
<td>0.71</td>
<td>0.59</td>
</tr>
<tr>
<td>R-UG 3</td>
<td>0.72</td>
<td>0.44</td>
</tr>
<tr>
<td>R-UG 4</td>
<td>0.44</td>
<td>0.22</td>
</tr>
<tr>
<td>R-UG 5</td>
<td>0.83</td>
<td>0.81</td>
</tr>
<tr>
<td>R-IG 1</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>R-IG 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IG 3</td>
<td>0.93</td>
<td>0.78</td>
</tr>
<tr>
<td>R-IG 4</td>
<td>0.95</td>
<td>0.88</td>
</tr>
<tr>
<td>R-IG 5</td>
<td>0.97</td>
<td>0.90</td>
</tr>
<tr>
<td>Mean GL</td>
<td>0.83</td>
<td>0.70</td>
</tr>
<tr>
<td>SE</td>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Supplementary Table 4: Evaluation of the linearity of the evolved N\textsubscript{2} during field incubation, per sampling plot in each field site. Only those samples that were above the MDC value are used. Linear evolution of N\textsubscript{2} in a constant headspace volume is proven when T2/T1 = 2 and T3/T1 ~ 18-24. T1 = 1 hour, T2 = 2 hours and T3 ~ 18-24 hours of incubation time. Ratios close to the ideal values (± 5%) are highlighted in bold font.

<table>
<thead>
<tr>
<th>Field Sites</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T2/T1</th>
<th>T3/T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PB 1</td>
<td>2.95</td>
<td>3.02</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-PB 2</td>
<td>10.92</td>
<td>3.70</td>
<td>47.96</td>
<td>0.34</td>
<td>4.39</td>
</tr>
<tr>
<td>C-PB 3</td>
<td>3.40</td>
<td>4.85</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-PB 4</td>
<td>8.03</td>
<td>4.29</td>
<td>6.73</td>
<td>0.53</td>
<td>0.84</td>
</tr>
<tr>
<td>C-PB 5</td>
<td>4.00</td>
<td>2.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 1</td>
<td></td>
<td>4.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 3</td>
<td></td>
<td>5.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-HL 1</td>
<td>12.26</td>
<td>18.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-HL 5</td>
<td></td>
<td>8.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-MW 1</td>
<td>2.17</td>
<td>39.87</td>
<td>30.48</td>
<td>18.38</td>
<td>14.05</td>
</tr>
<tr>
<td>C-MW 2</td>
<td>62.13</td>
<td>70.63</td>
<td>40.32</td>
<td>1.14</td>
<td>0.65</td>
</tr>
<tr>
<td>C-MW 3</td>
<td>19.70</td>
<td>23.50</td>
<td>5.22</td>
<td>1.19</td>
<td>0.27</td>
</tr>
<tr>
<td>C-MW 4</td>
<td>65.93</td>
<td>38.21</td>
<td>26.94</td>
<td>0.58</td>
<td>0.41</td>
</tr>
<tr>
<td>C-MW 5</td>
<td>66.71</td>
<td>26.80</td>
<td>20.47</td>
<td>0.40</td>
<td>0.31</td>
</tr>
<tr>
<td>R-DW 1</td>
<td>5.65</td>
<td>1.97</td>
<td>50.49</td>
<td>0.35</td>
<td>8.94</td>
</tr>
<tr>
<td>R-DW 2</td>
<td>8.28</td>
<td>5.31</td>
<td>143.70</td>
<td>0.64</td>
<td>17.35</td>
</tr>
<tr>
<td>R-DW 3</td>
<td>8.98</td>
<td>0.67</td>
<td>72.54</td>
<td>0.07</td>
<td>8.08</td>
</tr>
<tr>
<td>R-DW 4</td>
<td>22.27</td>
<td>126.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-DW 5</td>
<td>30.23</td>
<td>9.29</td>
<td>71.12</td>
<td>0.31</td>
<td>2.35</td>
</tr>
<tr>
<td>C-IG 1</td>
<td>3.96</td>
<td>12.12</td>
<td>97.06</td>
<td>3.06</td>
<td>24.48</td>
</tr>
<tr>
<td>C-IG 2</td>
<td>4.33</td>
<td>1.78</td>
<td>61.82</td>
<td>0.41</td>
<td>14.27</td>
</tr>
<tr>
<td>C-IG 3</td>
<td>4.37</td>
<td>2.59</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-IG 4</td>
<td>2.44</td>
<td>3.78</td>
<td>231.27</td>
<td>1.55</td>
<td>94.61</td>
</tr>
<tr>
<td>C-IG 5</td>
<td>7.09</td>
<td>6.72</td>
<td>216.28</td>
<td>0.95</td>
<td>30.50</td>
</tr>
<tr>
<td>R-UG 1</td>
<td>28.70</td>
<td>2.43</td>
<td>145.85</td>
<td>0.08</td>
<td>5.08</td>
</tr>
<tr>
<td>R-UG 2</td>
<td>11.76</td>
<td>43.22</td>
<td>285.30</td>
<td>3.68</td>
<td>24.27</td>
</tr>
<tr>
<td>R-UG 3</td>
<td>17.02</td>
<td>3.10</td>
<td>414.67</td>
<td>0.18</td>
<td>24.36</td>
</tr>
<tr>
<td>R-UG 4</td>
<td>25.05</td>
<td>18.67</td>
<td>479.09</td>
<td>0.75</td>
<td>19.13</td>
</tr>
<tr>
<td>R-UG 5</td>
<td>16.29</td>
<td>4.88</td>
<td>141.80</td>
<td>0.30</td>
<td>8.70</td>
</tr>
<tr>
<td>R-IG 1</td>
<td>12.69</td>
<td></td>
<td>217.82</td>
<td></td>
<td>17.16</td>
</tr>
<tr>
<td>R-IG 2</td>
<td>19.30</td>
<td></td>
<td>51.79</td>
<td></td>
<td>2.68</td>
</tr>
<tr>
<td>R-IG 3</td>
<td>27.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IG 4</td>
<td>27.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IG 5</td>
<td></td>
<td></td>
<td>20.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 5: Evaluation of the linearity of the evolved N$_2$O during field incubation, per sampling plot in each field site. Only those samples that were above the MDC value are used. Linear evolution of N$_2$O in a constant headspace volume is proven when $T_2/T_1 = 2$ and $T_3/T_1 \sim 18-24$. T1 = 1 hour, T2 = 2 hours and T3 ~ 18-24 hours of incubation time. Ratios close to the ideal values (± 5%) are highlighted in bold font.

<table>
<thead>
<tr>
<th>Field Sites</th>
<th>Evolved N$_2$O (µg N)</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T2/T1</th>
<th>T3/T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PB 1</td>
<td></td>
<td>0.0038</td>
<td>0.0179</td>
<td>0.0468</td>
<td>4.71</td>
<td>12.35</td>
</tr>
<tr>
<td>C-PB 2</td>
<td></td>
<td>0.0079</td>
<td>0.0441</td>
<td>0.1235</td>
<td>5.62</td>
<td>15.73</td>
</tr>
<tr>
<td>C-PB 3</td>
<td></td>
<td>0.0009</td>
<td>0.0069</td>
<td>0.1182</td>
<td>7.70</td>
<td>131.48</td>
</tr>
<tr>
<td>C-PB 4</td>
<td></td>
<td>0.0015</td>
<td>0.0084</td>
<td>0.1328</td>
<td>5.43</td>
<td>86.02</td>
</tr>
<tr>
<td>C-PB 5</td>
<td></td>
<td>0.0006</td>
<td>0.0063</td>
<td>0.2711</td>
<td>11.37</td>
<td>492.23</td>
</tr>
<tr>
<td>C-UG 1</td>
<td></td>
<td>0.0002</td>
<td>0.0037</td>
<td>0.0156</td>
<td>19.75</td>
<td>17.42</td>
</tr>
<tr>
<td>C-UG 2</td>
<td></td>
<td>0.0009</td>
<td>0.0049</td>
<td>0.0156</td>
<td>5.48</td>
<td>17.42</td>
</tr>
<tr>
<td>C-UG 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-HL 1</td>
<td></td>
<td>0.0009</td>
<td>0.0034</td>
<td>0.0051</td>
<td>3.70</td>
<td>5.45</td>
</tr>
<tr>
<td>R-HL 2</td>
<td></td>
<td>0.0005</td>
<td>0.0012</td>
<td></td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>C-MW 1</td>
<td></td>
<td>0.003</td>
<td>0.008</td>
<td>0.075</td>
<td>2.89</td>
<td>27.32</td>
</tr>
<tr>
<td>C-MW 2</td>
<td></td>
<td>0.083</td>
<td>0.221</td>
<td>2.240</td>
<td>2.65</td>
<td>26.92</td>
</tr>
<tr>
<td>C-MW 3</td>
<td></td>
<td>0.004</td>
<td>0.009</td>
<td>0.030</td>
<td>2.11</td>
<td>7.25</td>
</tr>
<tr>
<td>C-MW 4</td>
<td></td>
<td>0.040</td>
<td>0.099</td>
<td>0.387</td>
<td>2.50</td>
<td>9.74</td>
</tr>
<tr>
<td>C-MW 5</td>
<td></td>
<td>0.064</td>
<td>0.123</td>
<td>0.575</td>
<td>1.91</td>
<td>8.97</td>
</tr>
<tr>
<td>R-DW 1</td>
<td></td>
<td>0.098</td>
<td>0.223</td>
<td>0.157</td>
<td>2.28</td>
<td>1.60</td>
</tr>
<tr>
<td>R-DW 2</td>
<td></td>
<td>0.033</td>
<td>0.216</td>
<td>0.480</td>
<td>6.64</td>
<td>14.77</td>
</tr>
<tr>
<td>R-DW 3</td>
<td></td>
<td>0.028</td>
<td>0.137</td>
<td>1.072</td>
<td>4.96</td>
<td>38.80</td>
</tr>
<tr>
<td>R-DW 4</td>
<td></td>
<td>0.039</td>
<td>0.199</td>
<td>0.429</td>
<td>5.10</td>
<td>10.97</td>
</tr>
<tr>
<td>R-DW 5</td>
<td></td>
<td>0.004</td>
<td>0.020</td>
<td>0.146</td>
<td>5.51</td>
<td>40.62</td>
</tr>
<tr>
<td>C-IG 1</td>
<td></td>
<td>1.379</td>
<td>4.290</td>
<td>13.873</td>
<td>3.11</td>
<td>10.06</td>
</tr>
<tr>
<td>C-IG 2</td>
<td></td>
<td>0.157</td>
<td>0.341</td>
<td>3.020</td>
<td>2.18</td>
<td>19.25</td>
</tr>
<tr>
<td>C-IG 3</td>
<td></td>
<td>0.566</td>
<td>3.614</td>
<td></td>
<td>6.38</td>
<td></td>
</tr>
<tr>
<td>C-IG 4</td>
<td></td>
<td>1.208</td>
<td>5.141</td>
<td>23.968</td>
<td>4.26</td>
<td>19.84</td>
</tr>
<tr>
<td>C-IG 5</td>
<td></td>
<td>1.857</td>
<td>5.865</td>
<td>20.054</td>
<td>3.16</td>
<td>10.80</td>
</tr>
<tr>
<td>R-UG 1</td>
<td></td>
<td>0.044</td>
<td>0.180</td>
<td>0.650</td>
<td>4.10</td>
<td>14.80</td>
</tr>
<tr>
<td>R-UG 2</td>
<td></td>
<td>0.008</td>
<td>0.071</td>
<td>4.975</td>
<td>9.29</td>
<td>652.28</td>
</tr>
<tr>
<td>R-UG 3</td>
<td></td>
<td>0.013</td>
<td>0.285</td>
<td>16.274</td>
<td>21.15</td>
<td>1205.50</td>
</tr>
<tr>
<td>R-UG 4</td>
<td></td>
<td>0.035</td>
<td>0.192</td>
<td>17.373</td>
<td>5.55</td>
<td>502.96</td>
</tr>
<tr>
<td>R-UG 5</td>
<td></td>
<td>0.036</td>
<td>0.263</td>
<td>5.960</td>
<td>7.40</td>
<td>167.40</td>
</tr>
<tr>
<td>R-IG 1</td>
<td></td>
<td>0.946</td>
<td>5.164</td>
<td>7.357</td>
<td>5.46</td>
<td>7.78</td>
</tr>
<tr>
<td>R-IG 2</td>
<td></td>
<td>0.117</td>
<td>1.227</td>
<td>6.160</td>
<td>10.47</td>
<td>52.56</td>
</tr>
<tr>
<td>R-IG 3</td>
<td></td>
<td>0.046</td>
<td>0.101</td>
<td>0.038</td>
<td>2.21</td>
<td>0.82</td>
</tr>
<tr>
<td>R-IG 4</td>
<td></td>
<td>0.040</td>
<td>0.598</td>
<td></td>
<td>14.97</td>
<td></td>
</tr>
<tr>
<td>R-IG 5</td>
<td></td>
<td>0.364</td>
<td>2.813</td>
<td>1.798</td>
<td>7.73</td>
<td>4.94</td>
</tr>
</tbody>
</table>
Supplementary Table 6: Evaluation of the change in the N₂O/ (N₂ + N₂O) ratio with incubation time. The denitrification product ratio is calculated only where both N₂ and N₂O fluxes are available. SE = Standard Error; n = number of samples per land use type.

<table>
<thead>
<tr>
<th>Field Sites</th>
<th>T = 1 hour</th>
<th>T = 2 hours</th>
<th>T = 20 hours</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PB 1</td>
<td>0.0013</td>
<td>0.0153</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>C-PB 2</td>
<td>0.0007</td>
<td>0.0118</td>
<td>0.0026</td>
<td>0.000</td>
</tr>
<tr>
<td>C-PB 3</td>
<td>0.0003</td>
<td>0.0014</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>C-PB 4</td>
<td>0.0002</td>
<td>0.0020</td>
<td>0.0193</td>
<td>0.001</td>
</tr>
<tr>
<td>C-PB 5</td>
<td>0.0016</td>
<td>0.0958</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>C-UG 1</td>
<td></td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 2</td>
<td></td>
<td></td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>C-UG 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-UG 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-HL 1</td>
<td></td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.000</td>
</tr>
<tr>
<td>R-HL 2</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Mean OS</td>
<td>0.001</td>
<td>0.003</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>0.0003</td>
<td>0.0018</td>
<td>0.0151</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>4.00</td>
<td>6.00</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>C-MW 1</td>
<td>0.001</td>
<td>0.000</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>C-MW 2</td>
<td>0.001</td>
<td>0.003</td>
<td>0.053</td>
<td>0.003</td>
</tr>
<tr>
<td>C-MW 3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.006</td>
<td>0.000</td>
</tr>
<tr>
<td>C-MW 4</td>
<td>0.001</td>
<td>0.003</td>
<td>0.014</td>
<td>0.001</td>
</tr>
<tr>
<td>C-MW 5</td>
<td>0.001</td>
<td>0.005</td>
<td>0.027</td>
<td>0.001</td>
</tr>
<tr>
<td>R-DW 1</td>
<td>0.017</td>
<td>0.102</td>
<td>0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td>R-DW 2</td>
<td>0.004</td>
<td>0.039</td>
<td>0.003</td>
<td>-0.001</td>
</tr>
<tr>
<td>R-DW 3</td>
<td>0.003</td>
<td>0.170</td>
<td>0.015</td>
<td>-0.004</td>
</tr>
<tr>
<td>R-DW 4</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean WL</td>
<td>0.003</td>
<td>0.036</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>0.002</td>
<td>0.020</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10.00</td>
<td>9.00</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>C-IG 1</td>
<td>0.258</td>
<td>0.261</td>
<td>0.125</td>
<td>-0.007</td>
</tr>
<tr>
<td>C-IG 2</td>
<td>0.035</td>
<td>0.161</td>
<td>0.047</td>
<td>-0.002</td>
</tr>
<tr>
<td>C-IG 3</td>
<td>0.115</td>
<td>0.583</td>
<td></td>
<td>0.468</td>
</tr>
<tr>
<td>C-IG 4</td>
<td>0.331</td>
<td>0.576</td>
<td>0.094</td>
<td>-0.019</td>
</tr>
<tr>
<td>C-IG 5</td>
<td>0.208</td>
<td>0.466</td>
<td>0.085</td>
<td>-0.013</td>
</tr>
<tr>
<td>R-UG 1</td>
<td>0.002</td>
<td>0.069</td>
<td>0.004</td>
<td>-0.002</td>
</tr>
<tr>
<td>R-UG 2</td>
<td>0.001</td>
<td>0.002</td>
<td>0.017</td>
<td>0.001</td>
</tr>
<tr>
<td>R-UG 3</td>
<td>0.001</td>
<td>0.084</td>
<td>0.038</td>
<td>0.000</td>
</tr>
<tr>
<td>R-UG 4</td>
<td>0.001</td>
<td>0.010</td>
<td>0.035</td>
<td>0.002</td>
</tr>
<tr>
<td>R-UG 5</td>
<td>0.002</td>
<td>0.051</td>
<td>0.040</td>
<td>0.001</td>
</tr>
<tr>
<td>R-IG 1</td>
<td>0.069</td>
<td>0.033</td>
<td>-0.002</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>R-IG 2</td>
<td>0.006</td>
<td>0.106</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>R-IG 3</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IG 4</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-IG 5</td>
<td></td>
<td></td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>Mean GL</td>
<td>0.07</td>
<td>0.23</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>0.03</td>
<td>0.07</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>14.00</td>
<td>10.00</td>
<td>12.00</td>
<td></td>
</tr>
</tbody>
</table>