Articles | Volume 13, issue 5
https://doi.org/10.5194/bg-13-1717-2016
https://doi.org/10.5194/bg-13-1717-2016
Research article
 | 
18 Mar 2016
Research article |  | 18 Mar 2016

Skeletal mineralogy of coral recruits under high temperature and pCO2

T. Foster and P. L. Clode

Abstract. Aragonite, which is the polymorph of CaCO3 precipitated by modern corals during skeletal formation, has a higher solubility than the more stable polymorph calcite. This higher solubility may leave animals that produce aragonitic skeletons more vulnerable to anthropogenic ocean acidification. It is therefore important to determine whether scleractinian corals have the plasticity to adapt and produce calcite in their skeletons in response to changing environmental conditions. Both high pCO2 and lower Mg ∕ Ca ratios in seawater are thought to have driven changes in the skeletal mineralogy of major marine calcifiers in the past ∼ 540 Ma. Experimentally reduced Mg ∕ Ca ratios in ambient seawater have been shown to induce some calcite precipitation in both adult and newly settled modern corals; however, the impact of high pCO2 on the mineralogy of recruits is unknown. Here we determined the skeletal mineralogy of 1-month-old Acropora spicifera coral recruits grown under high temperature (+3 °C) and pCO2 (∼ 900 µatm) conditions, using X-ray diffraction and Raman spectroscopy. We found that newly settled coral recruits produced entirely aragonitic skeletons regardless of the treatment. Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be the investigation of the combined impact of high pCO2 and reduced Mg ∕ Ca ratio on coral skeletal mineralogy.

Download
Short summary
In recent years much research has focussed on whether corals will be able to build their skeletons under predicted ocean acidification. One strategy corals may employ is changing the mineralogy of their skeletons from aragonite to the less soluble polymorph of calcium carbonate; calcite. Here we show that newly settled coral recruits are unable to produce calcite in their skeletons under near-future elevations in pCO2, which may leave them more vulnerable to ocean acidification.
Altmetrics
Final-revised paper
Preprint