Insights into the transfer of silicon isotopes into the sediment record

V. N. Panizzo1,2, G. E. A. Swann1,2, A. W. Mackay3, E. Vologina4, M. Sturm5, V. Pashley6, and M. S. A. Horstwood6

1School of Geography, Centre for Environmental Geochemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
2Centre for Environmental Geochemistry, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
3Environmental Change Research Centre, Department of Geography, University College London, Gower Street, London, WC1E 6BT, UK
4Institute of Earth’s Crust, Siberian Branch of the Russian Academy of Sciences, 128 ul. Lermontov, Irkutsk, 664033, Russia
5Eawag-ETH, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
6NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK

Correspondence to: V. N. Panizzo (virginia.panizzo@nottingham.ac.uk)

Received: 22 May 2015 – Published in Biogeosciences Discuss.: 23 June 2015
Revised: 9 December 2015 – Accepted: 10 December 2015 – Published: 15 January 2016

Abstract. The first δ^{30}Si$_{\text{diatom}}$ data from lacustrine sediment traps are presented from Lake Baikal, Siberia. Data are compared with March surface water (upper 180 m) δ^{30}Si$_{\text{DSi}}$ compositions for which a mean value of $+2.28\%e \pm 0.09$ (95\% confidence) is derived. This value acts as the prediatom bloom baseline silicic acid isotopic composition of waters (δ^{30}Si$_{\text{DSi initial}}$). Open traps were deployed along the depth of the Lake Baikal south basin water column between 2012 and 2013. Diatom assemblages display a dominance (> 85\%) of the spring/summer bloom species Synedra acus var radians, so that δ^{30}Si$_{\text{diatom}}$ compositions reflect predominantly spring/summer bloom utilisation. Diatoms were isolated from open traps and, in addition, from 3-monthly (sequencing) traps (May, July and August 2012) for δ^{30}Si$_{\text{diatom}}$ analyses. Mean δ^{30}Si$_{\text{diatom}}$ values for open traps are $+1.23\%e \pm 0.06$ (at 95\% confidence and MSWD of 2.9, n = 10). Total dry mass sediment fluxes are highest in June 2012, which we attribute to the initial export of the dominant spring diatom bloom. We therefore argue that May δ^{30}Si$_{\text{diatom}}$ signatures ($+0.67\%e \pm 0.06$, 2\sigma) when compared with mean upper water δ^{30}Si$_{\text{DSi}}$ initial (e.g. pre-bloom) signatures can be used to provide a snapshot estimation of diatom uptake fractionation factors (ϵ_{uptake}) in Lake Baikal. A ϵ_{uptake} estimation of $-1.61\%e$ is therefore derived, although we emphasise that synchronous monthly δ^{30}Si$_{\text{DSi}}$ and δ^{30}Si$_{\text{diatom}}$ data would be needed to provide more robust estimations and therefore more rigorously test this, particularly when taking into consideration any progressive enrichment of the DSi pool as blooms persist. The near-constant δ^{30}Si$_{\text{diatom}}$ composition in open traps demonstrates the full preservation of the signal through the water column and thereby justifies the use and application of the technique in biogeochemical and palaeoenvironmental research. Data are finally compared with lake sediment core samples, collected from the south basin. Values of $+1.30\%e \pm 0.08$ (2\sigma) and $+1.43\%e \pm 0.13$ (2\sigma) were derived for cores BAIK13-1C (0.6–0.8 cm core depth) and at BAIK13-4F (0.2–0.4 cm core depth) respectively. Trap data highlight the absence of a fractionation factor associated with diatom dissolution ($\epsilon_{\text{dissolution}}$) (particularly as Synedra acus var radians, the dominant taxa in the traps, is very susceptible to dissolution) down the water column and in the lake surface sediments, thus validating the application of δ^{30}Si$_{\text{diatom}}$ analyses in Lake Baikal and other freshwater systems, in palaeoreconstructions.

1 Introduction

Records of diatom silicon isotopes (δ^{30}Si$_{\text{diatom}}$) provide a key means to investigate changes in the global silicon cycle (De La Rocha, 2006; Hendry and Brzezinski, 2014; Leng et al., 2009; Tréguer and De La Rocha, 2013). Through measurements of δ^{30}Si (including diatoms δ^{30}Si$_{\text{diatom}}$ and the dissolved silicon (DSi) phase δ^{30}Si$_{\text{DSi}}$) it has been possible to elucidate a more comprehensive understanding of biogeo-

Published by Copernicus Publications on behalf of the European Geosciences Union.
and their interpretations rely on work that has examined the p
cpheric marine biological pump in regulating past changes in atmo-
2012) allowing, for example, an assessment of the role of the
2013; Opfergelt et al., 2011) and in the ocean (Fripiat et al.,
chemical cycling both on continents (e.g. Cockerton et al.,
aimed to validate the proxy in lacustrine systems via in situ
strate. Estimations of
−
1 ‰ ± 1 ‰ and into the sediment record.

A further assumption is that the isotopic signatures captured by diatoms in the photic zone are faithfully transported through the water column and into the sediment record, without alteration from dissolution or other processes. This has been questioned by evidence from diatom cultures which have revealed a diatom dissolution induced fractionation (\(\epsilon_{\text{dissolution}}\)) of \(-0.55 \pm 0.05 ‰\) (from the preferential release of the heavier \(^30\text{Si}\) isotope into the dissolved phase, over the lighter \(^28\text{Si}\) during dissolution) that is independent of inter-species variations or temperature (Demarest et al., 2009), although the importance and indeed existence of an \(\epsilon_{\text{dissolution}}\) has been questioned by studies in the natural environment (Egan et al., 2012) and the laboratory (Wetzel et al., 2014). Whilst measurements of \(\delta^{30}\text{Si}_{\text{diatom}}\) from sediment traps (Varela et al., 2004), core-tops (Egan et al., 2012) and in situ water column biogenic silica (BSI) (Fripiat et al., 2012) in marine systems have been used in isolation, an integrated record is needed to document the fate of \(\delta^{30}\text{Si}_{\text{diatom}}\) as diatoms sink through the water and become incorporated into the sediment record, particularly in a lacustrine system where hitherto no such work has taken place. Here, we present pre-diatom bloom \(\delta^{30}\text{Si}_{\text{BSI, initial}}\) and \(\delta^{30}\text{Si}_{\text{diatom}}\) data from Lake Baikal, Siberia (Fig. 1). By analysing samples from sediment traps through the > 1600 m water column and a sediment core from the same site (Fig. 1), we document the good transfer of the photic zone \(\delta^{30}\text{Si}_{\text{DSi}}\) signature into diatoms and into the sediment record.

Unlike in ocean systems, where \(\delta^{30}\text{Si}_{\text{diatom}}\) analyses have been used as a tracer for past surface water DSI utilisation and/or supply (De La Rocha, 2006; Pichevin et al., 2012; Panizzo et al., 2013), its application in lake systems has not been as fully explored. To date, only a handful of studies have aimed to validate the proxy in lacustrine systems via in situ measurements of seasonal DSI and BSI (Alleman et al., 2005; Opfergelt et al., 2011). Here we present a further validation of the proxy (e.g. estimations of \(\epsilon_{\text{uptake}}\)), which also aims to address more fully the preservation of the signal to the sediment record (\(\epsilon_{\text{dissolution}}\)), which is of great importance in Lake Baikal where dissolution of diatoms is prevalent. This is particularly important if measurements of \(\delta^{30}\text{Si}_{\text{diatom}}\) are to be used to reconstruct past DSI utilisation and/or supply in relation to climatic and/or environmental perturbations (Street-Perrott et al., 2008; Swann et al., 2010). Furthermore, with recent evidence highlighting the perturbation of the steady-state delivery of DSI to ocean systems as a result of lacustrine burial (Frings et al., 2014), the application of \(\delta^{30}\text{Si}_{\text{diatom}}\) techniques may be of great value in the future.

The main objectives of this study are therefore

1. use annual sediment trap data as a means to document the good transfer of surface \(\delta^{30}\text{Si}_{\text{diatom}}\) compositions to the sediment record and validate the use of \(\delta^{30}\text{Si}_{\text{diatom}}\) methods in Lake Baikal as a proxy for DSI utilisation/supply, and
2. use sediment trap data, for the first time, to attempt to validate fundamental principles of \(\epsilon_{\text{uptake}}\) and \(\epsilon_{\text{dissolution}}\).
in Lake Baikal, which to date have been more widely investigated in marine systems.

2 Lake Baikal

Lake Baikal (103°43′–109°58′ E and 51°28′–55°47′ N) is the world’s deepest and most voluminous lake (23 615 km3) containing one-fifth of global freshwater not stored in glaciers and ice caps (Atlas Baikalia, 1993; Gronskaya and Litova, 1991; Shersytyanik et al., 2006). Divided into three basins (south, central and north), the Academician Ridge separates the central (max depth 1642 m) and north (max depth 904 m) basins, while the Buguldeika ridge running north-easterly from the shallow waters of the Selenga delta divides the south (max depth 1460 m) and central basins (Shersytyanik et al., 2006) (Fig. 1). This study will focus on the southern basin (where sediment traps were deployed; Fig. 1), which has an estimated average depth of 853 m (Gronskaya and Litova, 1991), although the residency time of silicon in the lake is estimated to be shorter at 170 years (Falkner et al., 1997).

Diatom dissolution in Lake Baikal occurs mainly at the bottom sediment–water interface as opposed to during down-column settling of diatoms (Ryves et al., 2003), with Müller et al. (2005) showing that remineralisation processes are an important constituent of surface water nutrient renewal. Lake Baikal may be thought of as having two differing water masses with the mesothermal maximum (MTM) separating them at a depth of ca. 200–300 m (Kipfer and Peeters, 2000; Ravens et al., 2000). In the upper waters (above ca. 200–300 m), both convective and wind forced mixing occurs twice a year (Shimaraev et al., 1994; Troitskaya et al., 2014) during spring and autumn overturn periods. These overturn periods follow (precede) ice-off (on) respectively and are separated by a period of summer surface water stratification (e.g. above the MTM). Diatom productivity in the lake is most notable during these overturn periods although spring diatom blooms tend to dominate annual productivity. Below ca. 300 m (e.g. below the MTM), waters are permanently stratified (Ravens et al., 2000; Shimaraev et al., 1994; Shimaraev and Granin, 1991), although despite this the water column of Lake Baikal is oxygenated throughout, and it is estimated that ca. 10% of its deeper water is renewed each year through downwelling episodes (Hohmann et al., 1997; Kipfer et al., 1996; Shimaraev and Granin, 1991; Weiss et al., 1991).

3 Methods

3.1 Sample locations

Upper water column (top 180 m) samples for DSi concentrations and δ^{30}Si$_{DSi}$ analyses were collected on two occasions, when the lake was ice-covered, less than 2 weeks apart, in March 2013 at site BAIK13-1 (sampling a and b; Table 1) in the south basin of Lake Baikal (Fig. 1; 51.76778° N and 104.41611° E) using a 2 L Van Dorn sampler. This sampling coincided with the period when (1) riverine and precipitation inflows to the lake are minimal, and (2) photosynthetic activity in the lake was low (as demonstrated by negligible in situ chlorophyll a measurements). We argue that the average pre-bloom DSi and δ^{30}Si$_{DSi}$ values represent the baseline nutrient conditions of the upper waters of the south basin. Samples were filtered on collection through 0.4 µm polycarbonate filters (Whatman) before storage in 125 mL acid-washed LDPE bottles, and acidified with Superpure HCl to a pH above 2.

At the same site, samples were collected from open sediment traps ($n = 10$) deployed by EAWAG and the Institute of Earth’s Crust/SB-RAS between March 2012 and March 2013 (from 100 to 1350 m water depth; Table 2) and from monthly sequencing traps ($n = 3$) on the same array at a water depth of 100 m. For all open traps and for three of the monthly traps (A4: 17 May to 7 June 2012, A6: 4 July to 31 July 2012 and A7: 31 July 2012 to 21 August 2012) it was possible to extract sufficient diatoms for isotope analysis (see below).

Sediment cores were collected from site BAIK13-1 (51.76778° E and 104.41611° N; Fig. 1) and from the nearby BAIK13-4 (51.69272° N and 104.30003° E; Fig. 1) using a UWITEC corer through ca. 78–90 cm of ice with onsite sub-sampling at 0.25 cm intervals. Both sediment cores were dated using 210Pb dating (at University College London) using the CRS (constant rate of supply) model (Appleby and Oldfield, 1978), which is in agreement with the individual 137Cs record for the two cores. Sub-samples corresponding to 0.6–0.8 cm at BAIK13-1 (core BAIK13-1C; age = 2007 AD ± 2 years) and 0.2–0.4 cm at BAIK13-4 (core BAIK13-4F; age = 2012 AD ± 7 years: the sampling period covered by the sediment traps) were processed to obtain diatoms for δ^{30}Si$_{diatom}$ analysis.

3.2 Analytical methods

3.2.1 Diatom counting

To assess the taxonomic composition of diatoms in the open sediment trap samples, diatom slides were prepared using a protocol that omits any chemical treatments or centrifugation in order to minimise further diatom dissolution and valve breakage (see Mackay et al., 1998, for full details). Slides were counted using a Zeiss light microscope with oil immersion and phase contrast at $\times 1000$ magnification. Microspheres at a known concentration of 8.2×10^6 spheres mL$^{-1}$ were added to all samples in order to calculate diatom concentrations.

www.biogeosciences.net/13/147/2016/
Table 1. δ^{30}Si$_{DSi}$, respective uncertainties (2σ, unless otherwise stated) and DSi concentrations for sampling in South Basin of Lake Baikal at site BAIK13-1 in March 2013. Bold values correspond to the weighted average mean values (with respective errors) of data presented. Data are plotted in Fig. 3.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>DSi (ppm)</th>
<th>δ^{30}Si$_{DSi}$</th>
<th>δ^{29}Si$_{DSi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAIK13-1a</td>
<td>0.4</td>
<td>1.22</td>
<td>+2.34</td>
</tr>
<tr>
<td>3 Mar 2013</td>
<td>10</td>
<td>1.19</td>
<td>+2.17</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.17</td>
<td>+2.55</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1.12</td>
<td>+2.18</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.06</td>
<td>+2.221</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>0.66</td>
<td>+2.40</td>
</tr>
<tr>
<td>BAIK13-1b</td>
<td>1</td>
<td>0.74</td>
<td>+2.16</td>
</tr>
<tr>
<td>12 Mar 2013</td>
<td>10</td>
<td>1.21</td>
<td>+2.44</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.15</td>
<td>+2.28</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.16</td>
<td>+2.29</td>
</tr>
</tbody>
</table>

This water sample was not pre-concentrated; refer to methods.

These water sample values are weighted averages for sample replicates that are analytically robust. These errors are at the 95% confidence interval.

Table 2. Open and sequencing trap (sampling interval 2012–2013)δ^{30}Si$_{diatom}$ data and respective uncertainties (2σ, unless otherwise stated). Mean values for open trap δ^{30}Si$_{diatom}$ compositions are provided (in bold) along with 95% confidence and the population MSWD value. Mean values for sequencing trap δ^{30}Si$_{diatom}$ are also displayed in bold, with respective 2 SD errors. Respective water column depths for open traps are presented along with the relative abundance of S. acus var radians (data not available for sequencing traps). All open trap data (Z2–Z11) are plotted in Fig. 4.

<table>
<thead>
<tr>
<th>Code</th>
<th>Depth (m)</th>
<th>δ^{30}Si$_{DSi}$</th>
<th>δ^{29}Si$_{DSi}$</th>
<th>Sediment flux (mg m$^{-2}$ d$^{-1}$)</th>
<th>S. acus var radians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open sediment traps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z2</td>
<td>100</td>
<td>+1.19</td>
<td>0.12</td>
<td>+0.62</td>
<td>0.07</td>
</tr>
<tr>
<td>Z3</td>
<td>200</td>
<td>+1.28</td>
<td>0.11</td>
<td>+0.70</td>
<td>0.06</td>
</tr>
<tr>
<td>Z4</td>
<td>300</td>
<td>+1.111</td>
<td>0.15</td>
<td>+0.611</td>
<td>0.08</td>
</tr>
<tr>
<td>Z5</td>
<td>400</td>
<td>+1.321</td>
<td>0.16</td>
<td>+0.691</td>
<td>0.10</td>
</tr>
<tr>
<td>Z6</td>
<td>600</td>
<td>+1.381</td>
<td>0.15</td>
<td>+0.711</td>
<td>0.10</td>
</tr>
<tr>
<td>Z7</td>
<td>700</td>
<td>+1.38</td>
<td>0.17</td>
<td>+0.69</td>
<td>0.11</td>
</tr>
<tr>
<td>Z8</td>
<td>900</td>
<td>+1.26</td>
<td>0.14</td>
<td>+0.66</td>
<td>0.10</td>
</tr>
<tr>
<td>Z9</td>
<td>1100</td>
<td>+1.21</td>
<td>0.13</td>
<td>+0.60</td>
<td>0.10</td>
</tr>
<tr>
<td>Z10</td>
<td>1300</td>
<td>+1.171</td>
<td>0.12</td>
<td>+0.611</td>
<td>0.07</td>
</tr>
<tr>
<td>Z11</td>
<td>1350</td>
<td>+1.25</td>
<td>0.11</td>
<td>+0.62</td>
<td>0.10</td>
</tr>
<tr>
<td>W.A Mean</td>
<td></td>
<td>+1.23</td>
<td>0.061</td>
<td>+0.63</td>
<td>0.031</td>
</tr>
<tr>
<td>MSWD</td>
<td></td>
<td>2.9</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequencing traps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>May</td>
<td>+0.67</td>
<td>0.06</td>
<td>+0.36</td>
<td>0.04</td>
</tr>
<tr>
<td>A6</td>
<td>Jul</td>
<td>+1.22</td>
<td>0.08</td>
<td>+0.53</td>
<td>0.09</td>
</tr>
<tr>
<td>A7</td>
<td>Aug</td>
<td>+1.37</td>
<td>0.07</td>
<td>+0.69</td>
<td>0.03</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>+1.09</td>
<td>0.74 (2 SD)</td>
<td>+0.53</td>
<td>0.33 (2 SD)</td>
</tr>
<tr>
<td>Sediment cores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAIK13-1C</td>
<td>0.6–0.8 cm</td>
<td>+1.30</td>
<td>0.08</td>
<td>+0.68</td>
<td>0.05</td>
</tr>
<tr>
<td>BAIK13-4F</td>
<td>0.2–0.4 cm</td>
<td>+1.43</td>
<td>0.13</td>
<td>+0.75</td>
<td>0.04</td>
</tr>
</tbody>
</table>

1 These water sample values are weighted averages for sample replicates that are analytically robust. These errors are at the 95% confidence interval.
3.2.2 Silicon isotope sample preparation

Prior to isotope analysis, 0.7–1.0 g of sediment core (dry weight) and trap material (wet weight) was digested of organic matter with analytical grade H2O2 (30 %) at 75 °C for ca. 12 h. This was followed by heavy density separation using sodium polytungstate (Sometu Europa) at 2500 rpm for 15 min, with centrifuge break off, at a specific gravity between 2.10 and 2.25 g mL−1 (adjusted to suit sample contamination) to remove lithogenic particles and clays. Samples were washed (up to 10 times) with deionised water at 2500 rpm for 5 min before visual inspection for contaminants at × − 400 magnification on a Zeiss inverted light microscope. All samples showed no evidence of external contaminants that would impact the isotopic measurements (as displayed in light microscopy images; Fig. 2).

Silicon concentrations on all 25 samples (10 March lake water and 13 diatom opal trap samples (open Z and sequencing A traps) and 2 lake surface sediment samples) were measured on an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) (Agilent Technologies 7500) at the British Geological Survey. Diatom samples were digested using the NaOH fusion method (Georg et al., 2006) with 1–3 mg of powdered material fused with a 200 mg NaOH (Quartz Merk) pellet in a silver crucible, covered within a Ni crucible of powdered material fused with a 200 mg NaOH (Quartz the NaOH fusion method (Georg et al., 2006) with 1–3 mg water and 13 diatom opal trap samples (open Z and sequenc-
ting matrices, samples and reference materials were acid-
ified using HCl (to a concentration of 0.05 M, using Romil UPA) and sulfuric acid (to a concentration of 0.003 M, using Romil UPA) following the recommendations of Hughes et al. (2011), the principle being that doping samples and standards alike, above and beyond the natural abundance of Cl− and SO42− will evoke a similar mass bias response in each. All samples and reference materials were doped with ∼ 300 ppb magnesium (Mg, Alfa Aesar SpectraPure) to allow the data to be corrected for the effects of instrument-induced mass bias (Cardinal et al., 2003; Hughes et al., 2011). In order to do this, Mg concentrations were the same in both standard and samples.

Background signal contributions on 28Si were typically between 50 and 100 ppm. Total procedural blanks for water samples were 15 ng compared to typical sample amounts of 4000 ng. Procedural blank compositions are difficult to accurately measure (due to exceedingly low Si signals), but as a worst-case scenario may have deviated from sample compositions by ca. 0.38 ‰, contributing up to a ca. 0.02 ‰ shift in typical sample compositions. This increases to ca. 0.20 ‰ compositional shift in exceptional cases, i.e. for one sample replicate (BAIK13-1 100 m), which has a Si concentration of much less than 1 ppm. Fusion procedural blanks were ca. 42 ng compared to typical fusion sample amounts of 4900 ng. Again, procedural blank compositions are difficult to accurately measure, but may have deviated from sample compositions by ca. 0.04 ‰, contributing up to a less than 0.01 ‰ shift in the sample compositions.

The validation material (diatomite) was analysed repeatedly during each analytical session and a secondary reference material (an in-house river water sample, RMR4) was also periodically analysed. Data were corrected online for mass bias using an exponential function, assuming 24Mg/25Mg = 0.126633. All uncertainties are reported at 2σ absolute, and incorporate an excess variance derived from the diatomite validation material, which was quadratically added to the analytical uncertainty of each measurement. 80Si/82Si ratios of all data were compared with the mass-dependent fractionation line (1.93), with which all data comply (Johnson et al., 2004). Long-term (ca. 2 years) variance for the method is the following: diatomite = ±1.23 ‰ ± 0.16 (2σ, n = 210) (consensus value of +1.26 ‰ ± 0.2, 2σ; Reynolds et al. (2007)) and RMR4 = ±0.88 ‰ ± 0.20 (2σ, n = 42).

4 Results

Below-ice δ30Si samples and DSi values in March 2013 from the top 1 m of the water column, collected within 2 weeks of each other, are +2.34 ‰ ± 0.15 (2σ), 1.22 ppm and +2.16 ‰ ± 0.09 (2σ), 0.74 ppm for BAIK13-1a and BAIK13-1b respectively (Fig. 3; Table 1). DSi compositions show some variability with depth at both sites, with overall trends showing decreasing concentrations with depth (Fig. 3), with the ex-
Figure 2. Light microscopy images of open trap diatom species from Lake Baikal (×1000). Images show the purity of samples used for $\delta^{30}\text{Si}_{\text{diatom}}$ analyses.

Figure 3. Depicting water column sampling from Lake Baikal (180 m below surface) of DSi concentrations (ppm) shown in green and $\delta^{30}\text{Si}_{\text{DSi}}$ (‰) signatures in blue. The two sampling intervals (BAIK13-1a and 1b) from March 2013 are both displayed. Note the different sampling depths for these two data sets. All analytical errors of uncertainty are shown in grey (2σ). All data correspond to Table 1.

ception of the surface sample at BAIK13-1b (0.74 ppm). As we are unable to fully account for this variability in DSi concentrations, we use a weighted mean of surface water (e.g. above the MTM) $\delta^{30}\text{Si}_{\text{DSi}}$ compositions, collected in March before the diatom bloom period, to act as the baseline isotopic composition (as will be discussed in Sect. 5.1). This is in order to compare with open trap data and estimate the fractionation effect of diatoms ($\epsilon_{\text{dissolution}}$). In this case, $\delta^{30}\text{Si}_{\text{DSi}}$ means are $+2.28\%$ (±0.09, 95% confidence; Table 1), although some variability is highlighted between data (e.g. mean square weighted deviation (MSWD) = 4.1, n = 10; Table 1).

ICP-MS data of diatom opal show that ratios of Al:Si are all < 0.01 (data not shown), indicating that contamination in all sediment trap and core samples is negligible. This was confirmed by visual inspection of the diatom samples by light microscopy, prior to analysis (Fig. 2). Sediment trap diatoms are dominated (> 85%) by the species Synedra acus var radians. Diatom concentrations show some variability, varying between ca. 3×10^4 and 7×10^4 valves g$^{-1}$ wet weight (Fig. 4), although lowest concentrations are seen in the open sediment trap at 1350 m depth (3×10^4 valves g$^{-1}$ wet weight Fig. 4). This is coincident with lowest diatom (S. acus var radians) valve abundances also (86%; Table 2). $\delta^{30}\text{Si}_{\text{diatom}}$ data from the open sediment traps show little variability (within analytical uncertainty) down the water column profile in Lake Baikal (Table 2; Fig. 4) with values ranging from +1.11 to +1.38‰ (weighted mean +1.23‰ ± 0.06 at 95% confidence, MSWD = 2.9, n = 10). Sequencing (A) traps from May, July and August following the onset of major diatom productivity in early spring show a degree of variability with July and August $\delta^{30}\text{Si}_{\text{diatom}}$ data similar to the open sediment traps but data from May lower at 0.67‰ ± 0.06 (Table 2). Surface sediment results from BAIK13-1C (0.6–0.8 cm core depth) and BAIK13-4F (0.2–0.4 cm core depth) are very similar to both open (Z) and July–August sequencing (A) traps with $\delta^{30}\text{Si}_{\text{diatom}}$ signatures of $+1.30\%$ ± 0.08 (2σ) and $+1.43\%$ ± 0.13 (2σ) respectively (Table 2). Open trap total dry mass fluxes show a near-constant value down the Lake Baikal water column (Table 2), with values ranging between 289.64 mg m$^{-2}$ d$^{-1}$ at 1300 m water depth and 327.32 mg m$^{-2}$ d$^{-1}$ at 900 m water depth. Sequencing traps show the highest peak in total dry mass fluxes for the month of June 1649.52 mg m$^{-2}$ d$^{-1}$ (although black particulate matter, of unknown origin, is also present) and remain higher (compared to winter months) from July to October (Fig. 5).
5 Discussion

The extreme continentality of the region around Lake Baikal generates cold, dry winters that create an extensive ice cover over the lake from October/November to May/June (north basin) and from January to April/May (south basin) (Atlas Baikalia, 1993). This ice cover plays a key role in regulating seasonal diatom productivity (as discussed in Sect. 2) with blooms developing following the (1) reductions in ice cover in spring and (2) after mixed-layer stratification in summer (Shimaraev et al., 1994; Popovskaya, 2000; Granin et al., 2000; Jewson et al., 2009; Troitskaya et al., 2014). These blooms are also coincident with periods of overturn in the upper waters of the lake (e.g. above the MTM; Sect. 2). The March $\delta^{30}\text{Si}_{\text{DSi}}$ data in this study were collected when there was negligible chlorophyll a in the water column down to a depth of 200 m. Accordingly, we interpret March $\delta^{30}\text{Si}_{\text{DSi}}$ ($+2.28\%e \pm 0.09$; 95 % confidence interval, $n = 10$; Table 1) as reflecting the pre-spring bloom isotopic composition of silicic acid in the mixed layer prior to its uptake and fractionation in subsequent weeks as the spring bloom develops. Whilst the open traps deployed from March 2012 to March 2013 may contain diatoms from both spring and autumnal blooms, we suggest that $\delta^{30}\text{Si}_{\text{DSi}}$ signatures from these traps are primarily derived from the first bloom in spring/summer due to the dominance of (1) spring diatom blooms in the annual record (Popovskaya, 2000), and (2) the dominance of spring/summer (May to August) blooming $S.\ acus\ var\ radians$ (Ryves et al., 2003) in the traps (> 85 % relative abundance (Fig. 4). This is supported by total dry mass fluxes from the 100 m sequencing traps which peak in June to September (Fig. 5). We therefore argue that the open trap data should be primarily reflective of spring to summer silicic acid utilisation in the photic zone and so can be used to trace the fate of surface water signatures through the water column and into the sediment record.

5.1 Estimations of diatom fractionation factors (ϵ)

During biomineralisation, diatoms discriminate against the heavier ^{30}Si isotope, preferentially incorporating ^{28}Si into their frustules and leaving ambient waters enriched in ^{30}Si. Existing work from culture experiments and marine environments has suggested an ϵ (the per mil enrichment factor
between dissolved (DSi) and solid (diatom) phases during biomineralisation (ϵ_{uptake}) of -1.1 ± 0.4 to $-1.2 \pm 0.2 \%e$ (De La Rocha et al., 1997; Milligan et al., 2004; Varela et al., 2004; Fripiat et al., 2011). Such estimations of ϵ_{uptake} have been applied within both closed system (De La Rocha et al., 1997) and open system (Varela et al., 2004) modelling as a means of estimating variations in 30Si compositions, although, as discussed in Sect. 1, more recent evidence from cultured marine diatoms does point to a species-dependent fractionation effect, which could range anywhere between $-0.53 \%e \pm 0.11$ (Fragilariaopsis kerguelensis species) and $-2.09 \%e \pm 0.09$ (Chaetoceros brevis species) (Sutton et al., 2013).

Monthly data for both 30Si$_{\text{DSi}}$ and 30Si$_{\text{diatom}}$ are not available in order to fully constrain ϵ_{uptake} over the course of the diatom growing season in Lake Baikal (e.g. estimating variations between the open and closed system models, where the import/export of DSi and BSi can be more fully estimated from surface waters). Nevertheless, we can apply the data in this context to provide a snapshot of ϵ_{uptake}, when a comparison is made between 30Si$_{\text{DSi initial}}$ and the first monthly sequencing trap 30Si$_{\text{diatom}}$ compositions. We select the May 30Si$_{\text{diatom}}$ signatures as we propose it reflects the initiation of the diatom bloom and therefore captures the opal exported (based on total dry mass sediment flux data: Fig. 5) from surface waters at this time. These compositions will therefore most likely derive from DSi initial compositions (March surface waters) before any (or minimal) progressive DSi enrichment occurs. We propose these data for discursive reasons in order to extend the estimations of ϵ_{uptake} from lacustrine systems and argue that they act as a snapshot estimation in this instance.

When examining sequencing trap total dry mass sediment fluxes for the year 2012–2013, numbers are greatest for the month of June (Fig. 5). This directly follows the period when 30Si$_{\text{diatom}}$ isotopic compositions are the lowest of the three sequencing traps presented (May 2012 = $+0.67 \%e \pm 0.06, 2\sigma$). Although diatom concentrations are not available for the sequencing traps, we propose that these higher total dry mass sediment fluxes (Fig. 5) capture the exported May 2012 diatom bloom (e.g. the spring bloom) following ice-off and, based on flux data, most likely represent the event more closely associated with pre-bloom surface water (e.g. March) 30Si$_{\text{DSi}}$ compositions ($+2.28 \%e \pm 0.09; 95\% \text{ confidence interval, } n = 10$; Table 1). Although later monthly 30Si$_{\text{DSi}}$ data are not available, it is probable that the heavier isotopic 30Si$_{\text{diatom}}$ compositions of July and August sequencing traps (Table 2) reflect the progressive enrichment of the DSi surface pool as the bloom develops. On the contrary, open trap data (Table 2) constitute the mean annual 30Si$_{\text{diatom}}$ composition of diatoms, incorporating signatures derived from throughout the year (a mean 30Si$_{\text{diatom}}$ composition of $+1.23 \%e \pm 0.06; 95\% \text{ confidence interval, } n = 10$; Table 2).

Although diatom uptake fractionation factors cannot be fully constrained in this study (particularly when addressing open trap 30Si$_{\text{diatom}}$ signatures), due to the absence of comprehensive monthly DSi and BSi data, we can still provide an estimation of ϵ_{uptake} for Lake Baikal. However, we emphasise that this is for discussion purposes alone and that in order for this to be a more robust estimation, there is a need for more seasonal investigations. Nevertheless, if we argue that May 30Si$_{\text{diatom}}$ act as the dominant spring bloom composition ($+0.67 \%e \pm 0.06, 2\sigma$; Table 2) exported from the surface zone and we compare this with our March 2013 mean pre-bloom spring top water (incorporating 0 to 180 m) 30Si$_{\text{DSi}}$ composition (e.g. a DSi initial) of $+2.28 \%e$ ($\pm 0.09, 95\% \text{ confidence interval, } n = 10$) (Table 1), we can derive an estimation of ϵ_{uptake} of $-1.61 \%e$ (ranging between -1.46 and $-1.70 \%e$ when taking account of respective analytical uncertainty). We propose that this reflects more fully the initial uptake of DSi by diatoms, following ice-off and turnover, while later sequential trap data (of July and August; $+1.22 \%e \pm 0.08$ and $+1.37 \%e \pm 0.07$ respectively; Table 2) quite possibly reflect the progressive enrichment of the surface DSi pool which cannot be constrained here. Although this ϵ_{uptake} estimation of $-1.61 \%e$ falls within (or just outside of, e.g. $-1.2 \%e \pm 0.2$ from Fripiat et al., 2011) analytical uncertainty of existing estimations of ϵ_{uptake} (e.g. from temperate/sub-polar marine diatoms, $-1.1 \%e \pm 0.4$; De La Rocha et al., 1997), we propose that they highlight the need for further estimations within the literature. This is particularly important within the context of freshwater Si palaeoconstructions where there is a paucity of laboratory culture experiments, as the handful of in situ measurements derived from lacustrine studies have calculated ϵ_{uptake} values closer to $-1.1 \%e$ (e.g. Allemann et al., 2005; Opfergelt et al., 2011). What is more, these estimations of ϵ_{uptake} are further compounded by the more recent evidence which has thrown into question the role that species-dependent fractionation factors may take during diatom biomineralisation (e.g. Sutton et al., 2013), although investigations of this in lacustrine environments are still to be conducted.

5.2 The fate of diatom utilisation and 30Si$_{\text{diatom}}$ in Lake Baikal

Asides from the discussions surrounding the biological uptake of DSi by diatoms and the seasonal relationship between DSi compositions, the isotopic composition of trap data (Table 2) from down the water column (except for the May sequencing trap) (Table 2) highlights the fact that the isotopic signature incorporated into diatoms in the photic zone during biomineralisation is safely transferred through the water column without alteration, either from dissolution ($\epsilon_{\text{dissolution}}$) or other processes. Indeed, 30Si$_{\text{diatom}}$ signatures through the open traps show minimal variation (mean of $+1.23 \%e \pm 0.06$ at 95\% confidence and MSWD of 2.9, $n = 10$; Table 2).
The role of dissolution is particularly important for the species Synedra acus var. radians (which dominates open trap compositions for the year 2012–2013; Table 2) as the literature has demonstrated the fragility of this valve, particularly its sensitivity to water column and surface sediment interface dissolution (Battarbee et al., 2005; Ryves et al., 2003). While this species is sensitive to dissolution, Mackay et al. (1998) have nevertheless documented an increased percentage presence in south basin Lake Baikal sediments over the past ca. 60 years (to between 10 and 20 % relative abundance), thought to represent a biological response to late 20th century warming in this region. Although the majority of dissolution in Lake Baikal occurs at the surface–sediment interface, with only 1 % of phytoplanktonic diatoms becoming incorporated into the sediment record (Ryves et al., 2003; Battarbee et al., 2005), $\delta^{30}\text{Si}_{\text{diatom}}$ in sediment core surface samples (i.e. post burial) at BAIK13-1C (0.6–0.8 cm core depth) and at BAIK13-4F (0.2–0.4 cm core depth) of $+1.30^{\circ}c\pm 0.08$ (2r) and $+1.43^{\circ}c\pm 0.13$ (2r) respectively (Fig. 4), are also similar (within uncertainty) to the sediment trap data of $+1.23^{\circ}c\pm 0.06$ (95 % confidence). These data confirm that in contrast to previous work (Demarest et al., 2009) there is no ϵ_{diatom} dissolution or at least no other alteration of the $\delta^{30}\text{Si}_{\text{diatom}}$ signature from diatoms sinking through the water column and during burial in the sediment record. This in agreement with previous studies on marine diatoms (Wetzel et al., 2014) and validates that $\delta^{30}\text{Si}_{\text{diatom}}$ can be used in lacustrine sediment cores to constrain biogeochemical cycling (building on work by Egan et al., 2012).

6 Conclusions

The first $\delta^{30}\text{Si}_{\text{diatom}}$ data from lacustrine sediment traps are presented from Lake Baikal, Siberia, and their use in interpreting the fate of $\delta^{30}\text{Si}_{\text{diatom}}$ in the sediment record is shown. Mean values for open traps ($+1.23^{\circ}c\pm 0.06$ at 95 % confidence and MSWD of 2.9, $n = 10$) suggest no alteration to the signal through the water column. Sequencing traps (May, July and August) do show variation in their $\delta^{30}\text{Si}_{\text{diatom}}$ signatures, with May the lowest at $+0.67^{\circ}c$ (± 0.06). With total dry mass sediment fluxes highest in June 2012, we argue that May represents the initial diatom bloom export from surface waters. As such, we provide a snapshot estimation of ϵ_{uptake} in Lake Baikal of $-1.61^{\circ}c$, when comparing May $\delta^{30}\text{Si}_{\text{diatom}}$ compositions and mean surface water March $\delta^{30}\text{Si}_{\text{DSI}}$ compositions ($+2.28^{\circ}c\pm 0.09$ at 95 % confidence). Although monthly synchronous $\delta^{30}\text{Si}_{\text{DSI}}$ and $\delta^{30}\text{Si}_{\text{diatom}}$ are not available to fully constrain ϵ_{uptake} (nor indeed any seasonal progressive enrichment of DSI in surface waters) in Lake Baikal surface waters, the data provide a snapshot into stable isotope processes in freshwater systems which to date have not been fully explored. The near-constant $\delta^{30}\text{Si}_{\text{diatom}}$ compositions in open traps demonstrates the full preservation of the signal through the water column and thereby justifies the use and application of the technique in biogeochemical and palaeoenvironmental research. In particular, data highlight the absence of a fractionation factor associated with diatom dissolution ($\epsilon_{\text{dissolution}}$) down the water column, of particular importance as the diatom species Synedra acus var. radians is known to be sensitive to dissolution with estimations of only up to 5 % making it to the sediment interface (Ryves et al., 2003). This is further reinforced by lake surface sediment data from south basin cores, which also demonstrate the absence of $\epsilon_{\text{dissolution}}$ due to the similar compositions (within uncertainty) of surface sediment $\delta^{30}\text{Si}_{\text{diatom}}$ when compared to open trap data.

Acknowledgements. This project was funded by National Environmental Research Council (NERC) standard grants NE/J00829X/1, NE/J010227/1 and NE/J007765/1 with research undertaken within the Centre of Environmental Geochemistry, a joint venture between the British Geological Survey and the University of Nottingham. The authors would like to thank Simon Chenery and Thomas Barlow (BGS) for ICP-MS analyses of dissolved silicon concentrations, in addition to Stephen Noble (NIGL) for his assistance and knowledge. Additional thanks go to Suzanne McGowan and Sarah Roberts (University of Nottingham) for their invaluable assistance in the field as well as the numerous other international colleagues that participated in the Lake Baikal March 2013 field season. The authors are indebted to the assistance of Nikolay M. Budnev (Irkutsk State University), the captain and crew of the Geolog research boat and Dmitry Gladkochub (IEC) in facilitating and organising all Russian fieldwork. All ^{210}Pb dating was conducted at the Environmental Change Research Centre, University College London.

Edited by: A. Shemesh

References

Appleby, P. G. and Oldfield, F.: The calculation of ^{210}Pb dates assuming a constant rate of supply of unsupported ^{210}Pb to the sediment, Catena, 5, 1–8, 1978.

Johnson, C. M., Beard, B. L., and Albarède, F.: Overview and general concepts, in: Geochemistry of Nontraditional Stable Isotopes, Reviews in Mineralogy and Geochemistry, edited by: Johnson, C. M., Beard, B. L., and Albarède, F., 1–24, 2004.

