Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka

Laura Sadori1, Andreas Koutsodendris2, Konstantinos Panagiotopoulos3, Alessia Masi1, Adele Bertini4, Nathalie Combouerie-Nebout5, Alexander Francke6, Katerina Kouli7, Sébastien Joannin8, Anna Maria Mercuri9, Odile Peyron8, Paola Torri9, Bernd Wagner6, Giovanni Zanchetta10, Gaia Sinopoli1, and Timme H. Donders11

1 Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Rome, Italy
2 Paleoenvironmental Dynamics Group, Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
3 Institute of Geography and Education, University of Cologne, Cologne, Germany
4 Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy
5 HNHP – Histoire naturelle de l’Homme préhistorique, UMR 7194 CNRS, Département de Préhistoire, Muséum national d’Histoire naturelle, Institut de Paléontologie Humaine, Paris, France
6 Institute for Geology and Mineralogy, University of Cologne, Cologne, Germany
7 Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
8 CNRS UMR 5554, Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Montpellier, France
9 Dipartimento di Scienze della Vita, Laboratorio di Palinologia e Paleobotanica, Università di Modena e Reggio Emilia, Modena, Italy
10 Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
11 Palaeoecology, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands

Correspondence to: Alessia Masi (alessia.masi@uniroma1.it)

Received: 31 August 2015 – Published in Biogeosciences Discuss.: 17 September 2015
Revised: 20 December 2015 – Accepted: 8 February 2016 – Published: 8 March 2016

Abstract. Lake Ohrid is located at the border between FYROM (Former Yugoslavian Republic of Macedonia) and Albania and formed during the latest phases of Alpine orogenesis. It is the deepest, the largest and the oldest tectonic lake in Europe. To better understand the paleoclimatic and paleoenvironmental evolution of Lake Ohrid, deep drilling was carried out in 2013 within the framework of the Scientific Collaboration on Past Speciation Conditions (SCO-PSCO) project that was funded by the International Continental Scientific Drilling Program (ICDP). Preliminary results indicate that lacustrine sedimentation of Lake Ohrid started between 1.2 and 1.9 Ma ago. Here we present new pollen data (selected percentage and concentration taxa/groups) of the uppermost ∼200 m of the 569 m long DEEP core drilled in the depocentre of Lake Ohrid. The study is the fruit of a cooperative work carried out in several European palynological laboratories. The age model of this part of the core is based on 10 tephra layers and on tuning of biogeochemical proxy data to orbital parameters.

According to the age model, the studied sequence covers the last ∼500 000 years at a millennial-scale resolution (∼1.6 ka) and records the major vegetation and climate changes that occurred during the last 12 (13 only pro parte) marine isotope stages (MIS). Our results indicate that there is a general good correspondence between forested/non-forested periods and glacial–interglacial cycles of the marine isotope stratigraphy. The record shows a progressive change from cooler and wetter to warmer and drier interglacial conditions. This shift in temperature and moisture availability is visible also in vegetation during glacial periods.

The period corresponding to MIS11 (pollen assemblage zone OD-10, 428–368 ka BP) is dominated by montane trees such as conifers. Mesophilous elements such as deciduous and semi-deciduous oaks dominate forest periods of MIS5 (PASZ OD-3, 129–70 ka BP) and MIS1 (PASZ OD-1, 14 ka BP to present). Moreover, MIS7 (PASZ OD-6, 245–190 ka) shows a very high interglacial variability, with alternating expansions of montane and mesophilous arboreal vegetation.
taxa. Grasslands (open vegetation formations requiring relatively humid conditions) characterize the earlier glacial phases of MIS12 (PASZ OD-12, 488–459 ka), MIS10 (corresponding to the central part of PASZ OD-10, 428–366 ka) and MIS8 (PASZ OD-7, 288–245 ka). Steppes (open vegetation formations typical of dry environments) prevail during MIS6 (OD-5 and OD-4, 190–129 ka) and during MIS4-2 (PASZ OD-2, 70–14 ka).

Our palynological results support the notion that Lake Ohrid has been a refugium area for both temperate and montane trees during glacials. Closer comparisons with other long southern European and Near Eastern pollen records will be achieved through ongoing high-resolution studies.

1 Introduction

The study of past climate change is pivotal to better understand current climate change (Tzedakis et al., 2009) and its impact on terrestrial ecosystems, particularly at the mid-latitudes, where human activities are concentrated. It is well established that the study of fossil pollen contained in sediments fundamentally contributes to the reconstruction of terrestrial palaeoenvironmental changes that occurred during the Quaternary, and constitutes the only quantitative proxy that can provide continuous and accurate representations of vegetation changes. This fact was already clear at the end of the 1960s when the pioneer pollen study of Wijmstra (1969) at Tenaghi Philippon (Greece) was published. The study of long lacustrine pollen records from southern Europe is particularly important, as at such latitudes, glaciations have not caused stratigraphic gaps in lacustrine systems, unlike northern European sequences (e.g., Zagwijn, 1992). The relationship of terrestrial vegetation with terrestrial, marine and ice core records is a further step in the understanding of global climate dynamics and lead–lag relations. A broader correspondence between the climate signals provided by terrestrial pollen records and marine oxygen isotope records has been observed (e.g., Tzedakis et al., 1997, 2001). Subsequent studies of both terrestrial (pollen) and marine (planktonic and benthic oxygen isotopes) proxies in marine cores from the Iberian margin confirmed the mostly in-phase relation probably starting between 1.2 and 1.9 Ma (Wagner et al., 2014; Lindhorst et al., 2015). The sensitive ecosystem response of the Deseree lakes Ohrid and Prespa to climate variability during the last glacial–interglacial cycle has been documented in several studies dealing with terrestrial vegetation composition and land cover (Lezine et al., 2010; Wagner et al., 2009, 2010; Panagiotopoulou, 2013; Panagiotopoulou et al., 2013, 2014), with macrophytes and phytoplankton communities (Panagiotopoulou et al., 2014; Cvetkoska et al., 2015a, b), and with stable isotope studies (Leng et al., 2010). These findings illustrate the value of the “sister” lakes Ohrid and Prespa as environmental archives. Combined with the lakes’ high biological endemism (Albrecht and Wilke, 2008; Föller et al., 2015) and the potential for in-
dependent age control through numerous volcanic ash layers (Sulpizio et al., 2010; Leicher et al., 2015), the Lake Ohrid record is a prime target to study past and present biodiversity and evolution.

The SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) international science team carried out a deep drilling campaign in spring 2013 in the framework of the International Continental Scientific Drilling Program (ICDP). The aim of this initiative is an interdisciplinary analysis of environmental and climate variability under different boundary conditions throughout the Pleistocene. Initial results, based on the DEEP borehole in the lake centre, show approximately 1.2 Ma of continuous lake sedimentation, with clear glacial–interglacial signatures represented in the sediment properties (Wagner et al., 2014). Here we report new palynological data from the upper ∼200 m of the DEEP core from Lake Ohrid, representing vegetation dynamics over the past ∼500 ka.

Specific objectives of this study are (1) to outline the flora and vegetation changes that occurred in the last half million years in the area surrounding Lake Ohrid, (2) to understand the glacial and interglacial vegetation dynamics, and (3) to correlate the vegetation changes with benthic and planktic marine isotope stratigraphy.

Considering the core length, in this paper we aim to provide a comprehensive overview of millennial-scale vegetation dynamics during glacial–interglacial stages at Lake Ohrid before analysing intervals at high resolution. The aim of this study is not in fact to discuss in detail the features of either interglacial or glacial periods. Existing high-resolution pollen studies focusing on different time intervals (e.g. Tzedakis et al., 2004b, 2009; Tzedakis, 2007; Fletcher et al., 2010; Margari et al., 2010; Moreno et al., 2015) offer a more detailed picture of ecosystem dynamics in the Mediterranean region. High-resolution studies using the exceptional Lake Ohrid archive are in progress for selected intervals (e.g. MIS 5–6, MIS 11–12 and MIS 35–42).

2 Site setting

Lake Ohrid (40°54′ to 41°10′N, 20°38′ to 20°48′E) is a transboundary lake located in the Balkan Peninsula within the Dinaride–Albanide–Hellenide mountain belt, at the border between Albania and FYROM (Fig. 1). It is the deepest and largest tectonic lake in Europe. It is located in a deep tectonic graben, with still tectonically active faults running parallel to the N–S orientation of the lake (e.g. Hoffmann et al., 2012).

Lake Ohrid has a sub-elliptical shape: it is 30.3 km long and 15.6 km wide and is located at an altitude of 693 m a.s.l. It has a water surface of ∼360 km², a maximum water depth of 293 m (Lindhorst et al., 2015) and a watershed area of ∼1400 km². The lake is surrounded by the Mokra mountains to the west (maximum altitude 1514 m) and the Galičica mountains to the east (maximum altitude 2265 m). The water body of the lake is fed 50% by sub-lacustrine karstic flow and 50% by surface inflow; river runoff is at present ∼20% of the total inflow and was even lower prior to 1962, when the Sateska River was diverted into the northern part of Lake Ohrid. Major fluvial inflows are from the rivers Daljan, Sateska, Cerava and Voljorek.

The river Crni Drim is the lake emissary and its outflow is artificially controlled. Lake Ohrid is separated from Lake Prespa, which is situated at 849 m a.s.l. (∼150 m higher), by the Galičica mountain range (Fig. 1). The two lakes are hydrologically connected through underground karst channels. Diatom palaeoecology shows that, despite the hydrological connectivity, the lake ecosystems respond independently to external forcing (Cvetkoska et al., 2015b). Because of the large extent of the karst system and the hydrological connection with Lake Prespa, the exact spatial distribution of the Lake Ohrid drainage basin is hard to determine (Watzin et al., 2002; Popovska and Bonacci, 2007; Wagner et al., 2009). If Lake Prespa and its tributaries are included in the catchment of Lake Ohrid, its area is calculated to 3921 km² (Portal Unesco, http://opendata.unesco.org/project/41304-549RER4000/).

The bedrock around the lake mainly consists of low- to medium-grade metamorphosed Palaeozoic sedimentary rocks and Triassic limestones intensely karstified along the eastern coast. The western shoreline is characterized by Jurassic
ophiolites of the Mirdita zone. Cenozoic sediments including Pliocene and Quaternary deposits are mainly found south-west of the lake (Wagner et al., 2009; Hoffmann et al., 2012).

Climatic conditions are strongly influenced by the proximity to the Adriatic Sea and the water bodies of lakes Ohrid and Prespa, which reduce the temperature extremes due to the presence of high mountain chains (Wagner et al., 2009; Hoffmann et al., 2012). An average precipitation for the Lake Ohrid watershed of ~900 mm has been determined by Popovska and Bonacci (2007). Temperatures range from ~10.5 to 22.3 °C in summer and from ~2.3 to 6.6 °C in winter. Prevailing wind directions are controlled by the basin morphology and have northern and southern provenances.

Studies on regional flora and vegetation are rather scarce in the international literature. The main source of information is from a detailed survey carried out in Galičica National Park (Matevski et al., 2011). Concerning the flora, the Mediterranean and Balkan elements dominate, but several central European species are also widespread in the area. The vegetation is organized into altitudinal belts, which develop from the lake level (700 m) to the top mountains (>2200 m) as a result of the topography.

In riparian forests, the dominant species is Salix alba. Extrazonal elements of Mediterranean vegetation are present at lower altitudes, while most forests are formed by deciduous elements. The forests appear to be rather diversified. A first belt is dominated by different species of both deciduous and semi-deciduous oaks (Quercus cerris, Q. frainetto, Q. petraea, Q. pubescens, and Q. trojana) and hornbeams (Carpinus orientalis, Ostrya carpinifolia). Proceeding towards higher altitudes, mesophilous/montane species such as Fagus sylvatica (beech), Carpinus betulus, Corylus colurna and Acer obtusatum are present. Abies alba and A. borisii-regis mixed forests grow at the upper limit of the forested area, and a sub-alpine grassland with Juniperus excelsa is found above 1800 m in the Mali i Thate mountains to the south-east. Alpine pasture lands and grasslands are found over the timberline, currently at around 1900 m (Matevski et al., 2011). The western slopes of the Galičica mountains facing Lake Ohrid are steep. The mountain’s highest peaks arise from karst plateaux located at an altitude of ~1600/1700 m, which have been intensely grazed in the past and are now being slowly reforested.

Pinus heldreichii shows a disjointed distribution in the Balkans and is not present in the region of Ohrid. It is present in Mavrovo National Park (FYROM) with populations rather small-sized that can even be counted to an exact figure (Matevski et al., 2011). The same applies to Pinus peuce. Sparse populations of Pinus sp. pl. (Klaus, 1989) are considered to be Tertiary relics and are located in the wider region of Lake Ohrid. These include populations of Pinus peuce (Macedonian pine) at high elevation in the Voras mountains in Greece (to the south-east of Lake Ohrid) (Dafis et al., 1997), and in Mavrovo (to the north) and Pelister (to the east) National Parks in FYROM (Panagiotopoulos, 2013; Panagiotopoulos et al., 2013; http://www.exploringmacedonia.com/national-parks.nsxp). Pinus peuce (Alexandrov and Andonovski, 2011) shows a high ecological adaptability. Cold mountain climate and high air humidity are the most suitable conditions for Macedonian pines. They naturally grow mainly on silicate terrains and, less often, on carbonate ones at an elevation of 800–900 up to 2300–2400 m a.s.l., while the most favourable habitats occur between 1600 and 1900 m altitude. Pinus nigra forests are widespread in the Grammos mountains to the south-west of the lake (Dafis et al., 1997).

Lake Ohrid is well known for its rich local macrophytic flora, consisting of more than 124 species. Four successive zones of vegetation characterize the lake shores: the zone dominated by floating species such as Lemna trisulca, mainly diffused in canals, the Phragmites australis discontinuous belt around the lake, the zone dominated by Potamogeton species, and the zone dominated by Chara species (Imeri et al., 2010).

3 Material and methods

Details about core recovery, the core composite profile and sub-sampling are provided by Wagner et al. (2014) and Francke et al. (2016). From the DEEP site (ICDP site 5045-1) in the central part of Lake Ohrid (41°02′57″ N, 20°42′54″ E, Fig. 1), 1526 m of sediments with a recovery of >95 % down to 569 m below lake floor (m b.l.f.) have been recovered from seven different boreholes at a water depth of 243 m. Until today, a continuous composite profile down to 247.8 m composite depth (mcd) with a recovery of >99 % has become available, and sub-sampling was carried out at 16 cm resolution (Francke et al., 2016).

3.1 Core chronology

The DEEP core chronology down to 247.8 mcd (Francke et al., 2016) is based on radiometric ages of 11 tephra layers (first-order tie points), and on tuning of biogeochemical proxy data to orbital parameters (second-order tie points; Laskar et al., 2004). The second-order tie points were obtained by tuning minima in total organic carbon (TOC) and TOC/TN against increasing summer insolation and winter season length. The timing of increasing summer insolation and winter season length caused cold and dry conditions in the Balkan Peninsula (Tzedakis et al., 2006; Francke et al., 2016), which may have led in Lake Ohrid to restricted primary productivity during summer and prolonged mixing and better decomposition of organic matter during winter. This likely resulted in low TOC and a low TOC/TN ratio (Francke et al., 2016). Finally, the age model for the sediment cores was refined by a comparison with the age model of the downhole logging data by Baumgarten et al. (2015). Correlation of the tephra layers with well-known eruptions of Italian
volcanoes and a re-calibration of radiometric ages from the literature have been carried out by Leicher et al. (2015).

3.2 Pollen analysis

Sample processing and pollen microscope analysis are the fruit of strict cooperative work by several investigators across many European laboratories. Prior to the pollen analysis, considerable time was invested in assessing and standardizing the treatment protocol and pollen identification issues. More specifically, (1) we joined previous lists of taxa that were derived from older studies in Lake Ohrid and the western Balkans and produced a final list that has been accepted by all the analysts; (2) we thoroughly elaborated on systematic issues like synonyms and different degrees of pollen determination, particularly focusing on the identification of problematic taxa; (3) we shared pollen pictures of key taxa (e.g. oak types) and of dubious ones; (4) we also performed analyses of samples from the same core depth in different laboratories. Samples were mostly distributed in batches of consecutive samples; and (5) finally, close checks were performed at the intervals where two different analysts’ samples met in order to avoid any potential identification bias.

A total of 306 sediment samples at 64 cm intervals down to the depth of 197.55 m taken from the DEEP core have been chemically processed for palynology in order to establish an overview diagram (named the skeleton diagram hereafter) spanning the past ∼500 ka. According to the age model by Francke et al. (2016), the mean resolution between two samples is ∼1600 years.

For each sample, 1/1.5 g of dry sediment was treated with cold HCl (37%), cold HF (40%) and hot NaOH (10%). In order to estimate the pollen concentration, two tablets containing a known number of Lycopodium spores (Stockmarr, 1971) were added to each sample. To draw pollen percentage diagrams, different pollen basis sums (PS) have been used, following the criteria listed by Berglund and Ralska-Jasiewiczowa (1986). Terrestrial pollen percentages have been calculated excluding Pinus from the PS due to its high overrepresentation in a large number of samples. The Pinus percentage was calculated on a different pollen sum which includes pines.

Oak pollen has been divided into three types according to morphological features following Smit (1973): Quercus robur type, which includes deciduous oaks, Quercus ilex type including the evergreen oaks minus Q. suber, and Quercus cerris type, including semi-deciduous oaks and Q. suber. Further identifications follow Beug (2004), Chester and Raine (2001) and Reille (1992, 1995, 1998). Juniperus type includes pollen grains of Cupressus, Juniperus and Taxus. Pollen curves/diagrams (Fig. 2, 3 and 4) were drawn using the C2 program (Juggins, 2003). Ages are expressed in thousands of years BP (ka BP). Pollen zone boundaries were established with the help of CONISS (Grimm, 1987). Given the millennial temporal resolution of the skeleton diagram and considering the ongoing and planned high-resolution studies, we assigned 13 (i.e. OD-1 to OD-13) Pollen Assemblage SuperZones (PASZ, sensu Tzedakis, 1994a) that correspond to major shifts in glacial–interglacial vegetation. This approach allows for the definition of new pollen zones and subzones within these superzones as high-resolution (centennial) data from the Lake Ohrid archive will emerge.

4 Results and discussion

We present data in two pollen diagrams: (i) a percentage pollen diagram (main taxa) based on the sediment depth scale and including lithostratigraphy and tie points used to assess chronology of the DEEP site sequence (Francke et al., 2016, Fig. 2); (ii) a pollen diagram showing the percentage sums of ecological groups and selected concentration curves drawn according to the age scale (Fig. 3).

In total, 296 samples (97% of the total analysed) yielded low–medium to high pollen concentrations allowing a detailed palynological analysis. Samples with counts less than 80 terrestrial pollen grains were excluded from the diagram. Mean pollen counts of 824 terrestrial pollen grains have been achieved. The physiognomy of vegetation shows maximum variability: arboreal pollen (AP) ranges from 19 to 99% (Fig. 2). The total pollen concentration of terrestrial taxa is quite variable, ranging from ca. 4000 to ca. 910 000 pollen grains g⁻¹ (Fig. 4). Lower values are found in herb-dominated glacial periods. Pollen preservation was good, allowing most times identification of individual taxa. The number of identified taxa is 175, encompassing 143 terrestrial and 10 aquatic plants.

The main vegetation features are summarized in Table 1. The pollen record was subdivided into 13 main pollen assemblage superzones (PASZ, OD – named after the Ohrid DEEP core) on the basis of changes in AP versus non-arboreal pollen (NAP), changes in pollen concentration and major changes in single taxa. The most abundant taxon is Pinus. Given the uncertainties on the origin of the high pollen percentages of Pinus, exceeding 95% in some samples, we decided to remove Pinus from the pollen sum (Figs. 2, 3 and 4, Table 1) used as the basis for all percentage calculations. The only exception is in Fig. 3, where we also present the AP–NAP diagram with Pinus included in the pollen sum.

4.1 Vegetation and climatic inferences based on the skeleton diagram

Climate variability paces the pronounced intra-interglacial vegetational shifts inferred from the pollen record, while different patterns of ecological succession emerge during interglacials (Fig. 3).

Long-term vegetation dynamics correspond accurately to the glacial and interglacial periods, even if admittedly the established chronology for the Lake Ohrid DEEP record could
Lake Ohrid (693 m a.s.l.) FYROM / Albania - DEEP core pollen percentage diagram (selected taxa)

Figure 2. Lake Ohrid (FYROM), DEEP core. Pollen percentage diagram of selected taxa against depth scale. Lithology, tephra layers and tuning points adapted from Francke et al. (2016).

be further improved with tuning to higher-resolution proxy data (see Zanchetta et al., 2015), with the detection of other tephra layers and the general improving of analyses obtained for the record.

In addition, most interstadials and some higher-order variability have been previously reported from south-eastern Europe, i.e. Ioannina (MIS6: Roucoux et al., 2011) and Tenaghi Philippon (MIS8: Fletcher et al., 2013). Ongoing high-resolution studies will help define dynamics of specific taxa, revealing extinctions and detecting possible new refuge areas.

A close look at the Lake Ohrid pollen record reveals distinct characteristics for glacial and interglacial phases during the investigated past 500 ka. Glacial periods are generally characterized by dominance of NAP (e.g. Poaceae, Chenopodiaceae and Artemisia). An exception to this behaviour is found during older glacial phases (OD-12, OD-11 and OD-9; Table 1) when Pinus pollen show high percentages and medium/high concentrations that appear reduced only at the end of OD-11 (Figs. 3, 4). Interglacial/interstadial periods are characterized by expansions of woodland organized in vegetation belts (e.g. forests with Abies, Picea, Quercus robur type, Q. cerris type) and by increases in AP–Pinus pollen concentration. This general pattern of glacial–interglacial alternations is at times punctuated by minor expansions of AP during glacial periods and accordingly by forest opening (stadials) during interglacial complexes. This is in agreement with previous studies from Greece, e.g. Ioannina (Tzedakis, 1994b; Tzedakis et al., 2002; Roucoux et al., 2008, 2011) and Tenaghi Philippon (e.g. Milner et al., 2012; Fletcher et al., 2013; Pross et al., 2015), and from central Italy (Follieri et al., 1998), suggesting a sensitive response of vegetation to climate change on a regional scale in south-eastern Europe. At Lake Ohrid, most tree taxa show a rather continuous presence, even during glacial phases, suggesting that the Ohrid region has been a plant refugium. The investigation of dynamics of specific taxa and time of extinctions and the detection of possible refuge areas are among the issues that must be refined by ongoing high-resolution studies.

A clear correspondence between the climate signals provided by our terrestrial pollen record and marine oxygen isotope records (Fig. 4) is apparent, even if the limits between

Biogeosciences, 13, 1423–1437, 2016 www.biogeosciences.net/13/1423/2016/
Figure 3. Lake Ohrid (FYROM), DEEP core. Pollen diagram of selected ecological groups (%) and concentration curves against chronology (Francke et al., 2016). Ecological groups: montane trees (Abies, Betula, Fagus, Ilex, Picea, Tilia); mesophilous trees (Acer, Buxus, Carpinus betulus, Castanea, Caryya, Celtis, Corylus, Fraxinus excelsiorloxycarpa, Ostrya/Carpinus orientalis, Pterocarya, Hedera, Quercus robur type, Quercus cerris type, Tilia, Tsuga, Ulmus, Zelkova); mediterranean trees (Arbutus, Fraxinus ornus, Cistus, Olea, Phillyrea, Pistacia, Quercus ilex, Rhamnus); riparian trees (Salix, Platanus, Populus, Alnus, Tamarix); pioneer shrubs (Ephedra, Juniperus type, Ericaceae, Hippophaë).

pollen zones and marine isotope stages are often not identical (Figs. 2, 3).

Glacial periods (PASZ OD-12, 11, 9, 7, 5, 4, 2, Table 1) are generally characterized by dominance of Poaceae, Artemisia, and Chenopodiaceae that are indicative of open environments around the lake. Poaceae probably include aquatic macrophytes from the lacustrine belt and herbs from grassland formations in the catchment of Lake Ohrid. Artemisia and Chenopodiaceae, which are typically components of steppe–desert environments, consist of shrub and sub-shrub species. In OD-12/11 and OD-9, high percentages of Pinus can either point to the local presence of widespread thickets like those currently growing at very high elevations in the surroundings of the lake, or to transport from a long distance in a barren land. Another aspect to consider is that a large lake such as Ohrid could partially resemble the marine realm, leading to over-representation of pollen grains that float easily. But this should be a constant factor in the analysed records, unless big changes in the lake surface occurred. The available seismic data, not completely processed yet, suggest anyway (K. Lindhorst and S. Krastel, personal information).

Figure 4. Comparison of selected proxies from Lake Ohrid with other records spanning the last 500 ka drawn against original age models. Lake Ohrid: total organic carbon, TOC, total inorganic carbon, TIC (Francke et al., 2016); total pollen concentration of terrestrial plants (AP + NAP) and the same without Pinus, AP percentages (this study). Tenaghi Philippon: AP % excluding Pinus, Betula and Juniperus (Wijmstra, 1969 and Wijmstra and Smit, 1976; age model from Tzedakis et al., 2006). Marine records: LR04 δ18O benthic stack (Lisiecki and Raymo, 2005); stacked benthic δ18O data for ODP sites 967 and 968 from the eastern Mediterranean (Konijnendijk et al., 2015); MEDSTACK planktic δ18O data (Wang et al., 2010).
Table 1. Main vegetational features of Lake Ohrid DEEP core pollen assemblage zones (OD-PASZ) and related chronological limits. The basis sum for AP and NAP taxa does not include Pinus (see text).

<table>
<thead>
<tr>
<th>PASZ</th>
<th>Depth limits (m)</th>
<th>Zone description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD-1</td>
<td>5–0</td>
<td>Mesophiliou tree taxa prevail. Forests are characterized by the Quercus robur type (22–43 %) and the Q. cerris type (2–21 %). Montane taxa are quite scarce and mainly represented by Abies and Fagus. Riparian and mediterranean trees are not abundant either. Poaceae are dominant among herbs. Pollen concentration is high.</td>
</tr>
<tr>
<td></td>
<td>14–0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-1 Duration (ka) 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-1 Pollen sample no. 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-1 Mean pollen count 353</td>
<td></td>
</tr>
<tr>
<td>OD-2</td>
<td>29–5</td>
<td>Open vegetation (steppe) with low/medium values of Pinus (9–77 %) and sparse presence of many montane and mesophiliou taxa. Among them the Q. robur type is worth mentioning. Artemisia is the most abundant taxon and is accompanied by other herbs like Poaceae, Chenopodiaceae and Cyperaceae. Pollen concentration shows medium values.</td>
</tr>
<tr>
<td></td>
<td>70–14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-2 Duration (ka) 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-2 Pollen sample no. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-2 Mean pollen count 270</td>
<td></td>
</tr>
<tr>
<td>OD-3</td>
<td>48–29</td>
<td>Alternation of periods characterized by mesophiliou/montane trees and open vegetation. Forests are mainly characterized by expansion of the Q. cerris type (2–33 %) and the Q. robur type (4–40 %) together with Abies and Fagus, this last one reaching the highest values of the diagram in this zone. Riparian and Mediterranean trees are present. Artemisia, Poaceae and Chenopodiaceae characterize the open vegetation. Pollen concentration is high.</td>
</tr>
<tr>
<td></td>
<td>129–70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-3 Duration (ka) 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-3 Pollen sample no. 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-3 Mean pollen count 660</td>
<td></td>
</tr>
<tr>
<td>OD-4</td>
<td>62–48</td>
<td>Open vegetation (steppe) with medium/high values of Pinus (14–83 %). Juniperus (0–55 %) and Hippophaë (0–5 %) are important woody taxa. Mesophiliou taxa are present even if with low values. Herbs are overwhelming: Artemisia shows a sudden increase, while Poaceae and Cyperaceae are reduced; Chenopodiaceae are abundant. Pollen concentration shows medium values.</td>
</tr>
<tr>
<td></td>
<td>160–129</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-4 Duration (ka) 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-4 Pollen sample no. 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-4 Mean pollen count 352</td>
<td></td>
</tr>
<tr>
<td>OD-5</td>
<td>80–62</td>
<td>Open vegetation with medium values of Pinus (6–75 %), Juniperus (0–9 %) and Hippophaë. Many mesophiliou taxa are present even if with low values. Herbs are overwhelming: Poaceae, Artemisia, Chenopodiaceae and Cyperaceae are abundant. Pollen concentration has medium values.</td>
</tr>
<tr>
<td></td>
<td>190–160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-5 Duration (ka) 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-5 Pollen sample no. 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-5 Mean pollen count 320</td>
<td></td>
</tr>
<tr>
<td>OD-6</td>
<td>106–80</td>
<td>Alternation of coniferous and mesophiliou forests with grassland (steppe) formations. Main conifer taxa are Pinus (24–99 %), Abies (0–77 %) and Picea (0–67 %); Q. cerris (0–21 %) is the dominant mesophiliou taxon, being more abundant than the Q. robur type (0–30 %). Poaceae are accompanied by high values of Chenopodiaceae, Cichorioideae and Artemisia. Pollen concentration is quite variable, oscillating from almost the highest to almost the lowest values of the record.</td>
</tr>
<tr>
<td></td>
<td>245–190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-6 Duration (ka) 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-6 Pollen sample no. 41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-6 Mean pollen count 1484</td>
<td></td>
</tr>
<tr>
<td>OD-7</td>
<td>125–106</td>
<td>Open vegetation with high values of pioneer taxa (mainly Juniperus). Pinus is very abundant (10–87 %). Poaceae are very abundant, accompanied by Chenopodiaceae and Artemisia. Pollen concentration is very low.</td>
</tr>
<tr>
<td></td>
<td>288–245</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-7 Duration (ka) 43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-7 Pollen sample no. 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-7 Mean pollen count 605</td>
<td></td>
</tr>
<tr>
<td>OD-8</td>
<td>145–125</td>
<td>Mesophiliou tree taxa prevail. Forests are characterized by the Quercus robur type (5–55 %) and the Q. cerris type (0–50 %). Riparian and mediterranean trees are worth mentioning. Poaceae are dominant among herbs. Pollen concentration is high.</td>
</tr>
<tr>
<td></td>
<td>333–288</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-8 Duration (ka) 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-8 Pollen sample no. 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-8 Mean pollen count 804</td>
<td></td>
</tr>
<tr>
<td>OD-9</td>
<td>155–145</td>
<td>Open vegetation with relatively high values of pioneer taxa. Pinus (60–98 %), the Juniperus type and Hippophaë are rather abundant. Picea (0–43 %) and Abies (0–63 %) are mainly found in the middle of the zone. Peaks of mesophiliou taxa are also observed. Poaceae, Chenopodiaceae, Asteroidae, Cichorioideae and Artemisia are very abundant. Pollen concentration is low.</td>
</tr>
<tr>
<td></td>
<td>366–333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-9 Duration (ka) 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-9 Pollen sample no. 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OD-9 Mean pollen count 438</td>
<td></td>
</tr>
</tbody>
</table>
firmed also by herbs: Poaceae and Cyperaceae decrease, while Artemisia and Chenopodiaceae increase towards the top of the diagram. Steppes and steppe forests seem to characterize the last two glacial periods.

OD-12 (488–459 ka) shows a dominance of AP and the overwhelming presence of pine pollen. This suggests that this period, corresponding to the first part of the MIS12 glacial phase, could have been cold but not very dry, so that conifer montane taxa such as *Pinus, Picea* and *Abies* were growing in the lake basin. In the following zone OD-11 (459–428 ka), stronger glacial conditions are evidenced by decreased AP and increased herbs. The curve of Hippophae, the only arbooreal plant with increasing percentages (Fig. 2), confirms this interpretation. The climate of this glacial phase was anyway wetter than the following ones, as evidenced by the permanence of both trees and the expansion of Cyperaceae. The relative humidity recorded at Lake Ohrid during the second part of MIS12 (OD-11) is consistent with the high endemism and biodiversity of the site. The buffering capacity of the lake has to be considered together with the possibility that a part of pine pollen could be from *Pinus picea*, a species with high ecological plasticity, which currently has only a relict distribution and is adapted to cold and moist conditions (Aleksandrov and Andonovski, 2011). The surrounding area of the lake could have acted as a refuge for conifers such as Macedonian pines. The relatively low abundance of the xerophytic Mediterranean “ecogroup” also supports this view. If we do not consider pine, the passage to the following interglacial (OD-10, 428–366 ka) is marked by an important and multi-millennial-long expansion of *Abies* (accompanied by the *Quercus robur* type) followed by a ~10 ka-long expansion of *Picea* (accompanied by the *Quercus cerris* type). This vegetation pattern indicates that the first part of this interglacial was warmer and wetter than the second one. Moreover, this long-term succession, which has also been documented in Praclaux (de Beaulieu et al., 2001) and in the central European lowlands (Koutsodendris et al., 2010), is not represented in the rest of the diagram, pointing to the unique character of MIS 11. Both fir (*Abies*) and spruce (*Picea*) could have occupied the montane belt (with pines at higher elevations or in poor soils), while deciduous oaks (*Quercus robur* type) first, and subsequently semi-deciduous oaks (*Quercus cerris* type), were most likely growing at lower elevations.

Glacial conditions prevailed during zone OD-9, 366–333 ka (cf. MIS10), even if oscillations of mesophilous trees occurred and alternated with herb expansions. Cichoriodaeae, together with Asteraceae undiff., characterized the herbaceous vegetation, although their values may be increased in the pollen profile because of taphonomic issues that still need to be further investigated.

The following interglacial OD-8, 333–288 ka (cf. MIS9), shows a three-phase widespread mesophilous arboreal expansion. The *Quercus robur* type prevailed in the first and longer phase, while the *Q. cerris* type at the end of the zone indicated a successive change from warmer and wetter to cooler and drier conditions interrupted by short cool events (NAP increases).
OD-7, 288–245 ka (cf. MIS8) shows low AP percentages (pioneer vegetation mainly consisting of the Juniperus type is rather abundant) and increased values of Poaceae. Even if Poaceae pollen could originate from the Phragmites lacustrine vegetation belt, such high values are mainly ascribed to the presence of regional grasslands that are typical for glacial periods in south-eastern Europe (e.g. Tzedakis et al., 2001; Pross et al., 2015).

OD-6 (245–190 ka) shows a very high forest variability, with three expansions of trees interrupted by two herb expansions. This interglacial/interstadial complex, possibly corresponding to MIS7, has a vegetation behaviour quite different from that of MIS9 and MIS11. MIS7 at Lake Ohrid is marked by warmer and wetter conditions as suggested by decreasing Abies and increasing Picea percentages. The first NAP increase is characterized by many taxa with similar values (Poaceae, Chenopodiaceae, Artemisia and other Asteroidae): the second one by Poaceae and the first strong increase in the Artemisia percentage in the diagram.

A long glacial phase is represented in OD-5 (190–160 ka) and OD-4 (160–129 ka). The limit between the two open formations is marked by a change from a grassland-dominated environment (Poaceae and Cyperaceae) to a steppe-dominated (Artemisia) one. Dry conditions are also indicated by a decreasing Quercus robur type and an increasing Q. cerris type together with Juniperus type and Hippophae percentages. The second part of MIS6 (OD-4) appears to be the driest phase of the diagram. This is in good agreement with hydro-acoustic data and sediment core analyses from the north-eastern corner of Lake Ohrid, which revealed that during MIS6 the water surface of the lake was 60 m lower than today (Lindhorst et al., 2010). Similarly, sedimentological data from the DEEP core (Francke et al., 2016) show that an accumulation of thin mass movement deposits (MMD) occurred during the second part of MIS6, which might be also indicative of low lake levels.

Forests of OD-3, 129–70 ka (cf. MIS5) are characterized by less variability than the previous OD-6 interglacial/interstadial complex. Mesophilous communities prevailed on the montane vegetation. Quercus robur type and Q. cerris type values are rather similar. Picea is very rare and Fagus shows the highest values of the entire record. Similarly to all previous interglacials, the vegetation seems to be organized in altitudinal belts. Periods with open vegetation are featured by expansions of Artemisia, Chenopodiaceae and Poaceae.

The last glacial period, i.e. MIS4-2, is represented in PASZ OD-2 (70–14 ka). It has a rather high variability, evidenced, already at this step of analysis, by important oscillations of most trees.

The present interglacial is characterized by the strong and prominent expansion of the Quercus robur type accompanied by the Q. cerris type and relatively low montane taxa such as Abies and Fagus. The uppermost samples show opening of the landscape by humans, with evidence of crops and spreading of fruit trees such as Juglans (included in Juglandaceae in Fig. 2). The reduced presence of Picea matches both the palynological data from Lake Prespa for the last glacial (Panagiotopoulos et al., 2014) and the present-day vegetation features of FYROM, where spruce is represented by relic populations in few forested areas. During the penultimate glacial (MIS6), Picea populations were probably too near to their tolerance limit to survive. The importance of ecological thresholds for temperate trees was carefully investigated in three Greek records located in contrasting bioclimatic areas (Ioannina, Kopais, Tenaghi Philippon; Tzedakis et al., 2004a). This turned out to be crucial to understand the importance of local factors in modulating the biological response to climatic stress that occurred in the last glacial and to comprehend the present-day distribution of arboreal species in the Balkans.

4.2 Comparison with other proxies and outlook

In Fig. 4 alignment of the TOC, TIC, AP percentages and AP + NAP concentrations from Lake Ohrid (and “ecogroup” curves of Fig. 3) with both Tenaghi Philippon AP % (Tzedakis et al., 2006) and marine isotope curves shows a very good general agreement between the different records. TOC and AP + NAP (pollen of terrestrial plants) concentration as well as AP % show the same main changes, indicating that there is a tight coupling between the plant biomass and the organic carbon deposited in the lake. TIC increases are mostly in phase with vegetation changes too. The main discrepancies between both TOC/TOC and pollen data are found during glacial phases OD-12 (488–459 ka) and OD-9 (368–333 ka).

The similarity between Lake Ohrid and Tenaghi Philippon curves is striking. All the main changes in forest cover match, and they both correspond to marine records too. There are some differences in the timing of the onset of interglacial phases. DEEP core chronology benefited in fact from the presence of several tephra layers (see Fig. 2, Leicher et al., 2015). The main difference with Tenaghi Philippon is in the fact that arboreal taxa show a continuous presence at Lake Ohrid, even during the glacials, while at Tenaghi Philippon they often disappear to spread again during the interglacials, often with a certain delay. This behaviour could anyway have been expected considering the differences in water availability at the two sites. In Greece, not only Tenaghi Philippon, but also the Kopais (Okuda et al., 2001) areas, resulted in not being ideal refugia for mesophilous trees (Tzedakis et al., 2004a). A quite different situation is found at Ioannina (western Greece), a refugial site for temperate trees featuring sub-Mediterranean climate and vegetation in the last ∼ 480 ka (Tzedakis, 1994b; Tzedakis et al., 2002, 2004a).

Besides a close correspondence to the Tenaghi Philippon AP % curve, Fig. 4 also shows a close correspondence between our pollen data and the Mediterranean benthic and planktic composite curves (Wang et al., 2010; Konijnendijk
et al., 2015). Compared to the global isotope stack (Lisiecki and Raymo, 2005; Railsback et al., 2015), additional detail in the pollen diagram is clearly representative of regional Mediterranean conditions and of the influence of moisture availability on the expansion of plants. Both marine deep and surface water features show additional warm phases during interglacials that are also observed in the pollen data. For example, the tripartite forests during MIS7 are well reflected in the pollen data but likely overprinted by the effect of ice volume in the global benthic isotope stack. Completion of the downcore analysis of the DEEP core from Lake Ohrid will allow for a more accurate correlation of the entire sequence with the orbitally tuned Mediterranean isotope records, and provide a finer tuning of the present age model (Francke et al., 2016) to independently dated records in the Mediterranean region where available.

5 Conclusions

The 500 ka long DEEP pollen record from Lake Ohrid represents a continuous documentation of the vegetation and climate history of the western Balkan region. Palynological data are complemented by many sedimentological proxies highlighting the need for a multi-disciplinary approach in palaeoenvironmental studies (see all other articles of this special issue).

The richness of pollen diversity and continuity along this long-time series point to the particular climatic and environmental conditions that contributed to the high plant diversity encountered at Ohrid at present. This has deep roots in the past, as the lake has probably acted as a permanent water reservoir providing moisture to its surroundings even during dramatic dry or cold climatic phases. In fact, trees never disappeared from the investigated area.

The main novelty of this pollen record from the Balkan Peninsula is summarized by the following key findings.

- The continuous record of glacial–interglacial vegetation successions shows that refugial conditions occurred in the Lake Ohrid area. Tree extinction, whose timing and patterns need accurate checks and refined analyses, will be focused on in a dedicated study.

- A clear shift from relatively cool/humid interglacial conditions prior to 288 ka BP, to warmer and drier ones during recent interglacial periods (last ∼130 ka), suggests changing patterns toward a more Mediterranean type climate. During the period that occurred between 245 and 190 ka (MIS7), a very high forest variability is found during interglacials and interstadials. Glacial features, generally characterized by grasslands until 245 ka BP and then by steppes, also confirm this climate shift.

- Similarities and dissimilarities with other southern European and Near Eastern pollen records, even if already visible, will be better defined with the improvement of analyses through ongoing high-resolution studies.

- A close correspondence of interglacial and glacial climate and vegetation evolution to regional benthic and planktic isotope data is apparent. The Ohrid pollen record integrates temperature data from the marine stratigraphy, with a clear indication of humidity/dryness changes.

Author contributions. This article is the product of strict cooperative work among palynologists who all contributed to the Lake Ohrid pollen analysis and its interpretation. The manuscript was written by L. Sadori with substantial contribution of T. H. Donders, A. Koutsodendris and K. Panagiotopoulos. A. Masi (c.a.) was responsible for data management and refined diagrams drawn by T. H. Donders and A. Koutsodendris. All coauthors contributed to the writing of this paper.

Acknowledgements. The authors are indebted to the two referees Thomas Litt and Chronis Tzedakis for the constructive comments that were used to improve the paper. Chronis Tzedakis was also of great help in giving hints to better anchor the chronology of the record.

We also thank Zlatko Levkov for organizing the SCOPSCO meeting in Skopje (2015) that gave the opportunity to A. Koutsodendris, A. Masi, K. Panagiotopoulos, L. Sadori and T. H. Donders to discuss with Valdo Matevski, botanist expert in the vegetation of Lake Ohrid, several aspects of the pollen diagram. The help of Valdo Matevski was valuable in figuring out some possible arboreal dynamics of the past. A. Koutsodendris, A. Masi, K. Panagiotopoulos, L. Sadori and T. H. Donders would also like to express their gratitude to Renata Kystrëvskë, Slavcho Hristovski and Mitko Kostadinovski from the University of Ss. Cyril and Methodius in Skopje for botanical literature and herbarium consultations.

The SCOPSCO Lake Ohrid drilling campaign was funded by ICDP, the German Ministry of Higher Education and Research, the German Research Foundation (DFG), the University of Cologne, the British Geological Survey, the INGV and CNR of Italy, and the governments of the Republic of Macedonia (FYROM) and Albania. Logistic support was provided by the Hydrobiological Institute in Ohrid. Drilling was carried out by Drilling, Observation and Sampling of the Earth’s Continental Crust’s (DOSECC) and using the Deep Lake Drilling System (DLDS). Special thanks are due to Beau Marshall and the drilling team. Ali Skinner and Martin Melles provided immense help and advice during logistic preparation and the drilling operation. A. Koutsodendris received funding from the German Research Foundation (grant KO4960/1).

Edited by: T. Wilke
References

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: A long-term numerical solution for the insola-

Okuda, M., Yasuda, Y., and Setoguchi, T.: Middle to Late Pleistocene vegetation history and climatic changes at Lake Kopais, Southeast Greece, Boreas, 30, 73–82, 2001.

Panagiotopoulos, K.: Late Quaternary ecosystem and climate interactions in SW Balkans inferred from Lake Prespa sediments, PhD thesis, Universität zu Köln, Germany, 2013.

