Articles | Volume 12, issue 4
https://doi.org/10.5194/bg-12-905-2015
https://doi.org/10.5194/bg-12-905-2015
Research article
 | 
16 Feb 2015
Research article |  | 16 Feb 2015

Steady-state solutions for subsurface chlorophyll maximum in stratified water columns with a bell-shaped vertical profile of chlorophyll

X. Gong, J. Shi, H. W. Gao, and X. H. Yao

Related authors

Seasonal characteristics of emission, distribution, and radiative effect of marine organic aerosols over the western Pacific Ocean: an investigation with a coupled regional climate aerosol model
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024,https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024,https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Xiaohong Yao and Leiming Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2968,https://doi.org/10.5194/egusphere-2023-2968, 2023
Short summary
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 1: Observational data analysis
Xing Wei, Yanjie Shen, Xiao-Ying Yu, Yang Gao, Huiwang Gao, Ming Chu, Yujiao Zhu, and Xiaohong Yao
Atmos. Chem. Phys., 23, 15325–15350, https://doi.org/10.5194/acp-23-15325-2023,https://doi.org/10.5194/acp-23-15325-2023, 2023
Short summary
Substantially positive contributions of new particle formation to cloud condensation nuclei under low supersaturation in China based on numerical model improvements
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023,https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary

Related subject area

Biogeophysics: Physical - Biological Coupling
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming
Sam Ditkovsky, Laure Resplandy, and Julius Busecke
Biogeosciences, 20, 4711–4736, https://doi.org/10.5194/bg-20-4711-2023,https://doi.org/10.5194/bg-20-4711-2023, 2023
Short summary
On the impact of canopy environmental variables on the diurnal dynamics of the leaf and canopy water and carbon dioxide exchange
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2282,https://doi.org/10.5194/egusphere-2023-2282, 2023
Short summary
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023,https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary
The contrasted phytoplankton dynamics across a frontal system in the southwestern Mediterranean Sea
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023,https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Sub-frontal niches of plankton communities driven by transport and trophic interactions at ocean fronts
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023,https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary

Cited articles

Anderson, G. C.: Subsurface chlorophyll maximum in the northeast Pacific Ocean, Limnol. Oceanogr., 14, 386–391, 1969.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., and Tremblay, J. E.: Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal and annual primary production estimates, Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, 2013.
Ayata, S., Lévy, M., Aumont, O., Sciandra, A., Sainte-Marie, J., Tagliabue, A., and Bernard, O.: Phytoplankton growth formulation in marine ecosystem models: should we take into account photo-acclimation and variable stoichiometry in oligotrophic areas?, J. Marine Syst., 125, 29–40, 2013.
Beckmann, A. and Hense, I.: Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions-A theoretical investigation, Prog. Oceanogr., 75, 771–796, 2007.
Behrenfeld, M. J. and Boss, E. S.: Resurrecting the ecological underpinnings of ocean plankton blooms, Annu. Rev. Mar. Sci., 6, 167–194, 2014.
Download
Short summary
Analytical solutions indicate that subsurface chlorophyll maximum (SCM) occurs at or below the depth of optimal growth of phytoplankton, and the depth of SCM layer deepens logarithmically with an increase in surface light intensity; thickness and intensity of the SCM layer are mainly affected by nutrient supply, but independent of surface light intensity; intensity of the SCM strengthens as a result of this layer being shrunk by a higher light attenuation coefficient or a large sinking velocity
Altmetrics
Final-revised paper
Preprint