Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 12, issue 20 | Copyright
Biogeosciences, 12, 6017-6031, 2015
https://doi.org/10.5194/bg-12-6017-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Oct 2015

Research article | 22 Oct 2015

Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset

T. P. Sasse1, B. I. McNeil1, R. J. Matear2, and A. Lenton2 T. P. Sasse et al.
  • 1Climate Change Research Centre, Kensington Campus, University of New South Wales, Sydney, Australia
  • 2CSIRO Oceans and Atmosphere National Research Flagship, Hobart, Australia

Abstract. Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem – from plankton at the base of the food chain to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean-surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (representative concentration pathways; RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite undersaturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long undersaturation by 17 ± 10 years compared to annual-mean estimates, with differences extending up to 35 ± 16 years in the North Pacific due to strong regional seasonality. This earlier onset will result in large-scale undersaturation once atmospheric CO2 reaches 496 ppm in the North Pacific and 511 ppm in the Southern Ocean, independent of emission scenario. This work suggests accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.

Download & links
Publications Copernicus
Download
Short summary
Our results show that accounting for oceanic CO2 seasonality is crucial to projecting the future onset of critical ocean acidification levels (i.e. aragonite undersaturation). In particular, seasonality will bring forward the initial onset of month-long undersaturation by a global average of 17 years. Importantly, widespread undersaturation is projected to occur once atmospheric CO2 reaches 496ppm in the North Pacific and 511ppm in the Southern Ocean, independent of emissions scenario.
Our results show that accounting for oceanic CO2 seasonality is crucial to projecting the future...
Citation
Share