Articles | Volume 12, issue 19
https://doi.org/10.5194/bg-12-5715-2015
https://doi.org/10.5194/bg-12-5715-2015
Research article
 | 
08 Oct 2015
Research article |  | 08 Oct 2015

A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite

S. Leung, A. Cabré, and I. Marinov

Related authors

Variable particle size distributions reduce the sensitivity of global export flux to climate change
Shirley W. Leung, Thomas Weber, Jacob A. Cram, and Curtis Deutsch
Biogeosciences, 18, 229–250, https://doi.org/10.5194/bg-18-229-2021,https://doi.org/10.5194/bg-18-229-2021, 2021
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Including filter-feeding gelatinous macrozooplankton in a global marine biogeochemical model: model–data comparison and impact on the ocean carbon cycle
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023,https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Riverine impact on future projections of marine primary production and carbon uptake
Shuang Gao, Jörg Schwinger, Jerry Tjiputra, Ingo Bethke, Jens Hartmann, Emilio Mayorga, and Christoph Heinze
Biogeosciences, 20, 93–119, https://doi.org/10.5194/bg-20-93-2023,https://doi.org/10.5194/bg-20-93-2023, 2023
Short summary
Methane emissions from Arctic landscapes during 2000–2015: An analysis with land and lake biogeochemistry models
Xiangyu Liu and Qianlai Zhuang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-220,https://doi.org/10.5194/bg-2022-220, 2022
Revised manuscript accepted for BG
Short summary
Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes
Valeria Di Biagio, Stefano Salon, Laura Feudale, and Gianpiero Cossarini
Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022,https://doi.org/10.5194/bg-19-5553-2022, 2022
Short summary
Quantifying biological carbon pump pathways with a data-constrained mechanistic model ensemble approach
Michael R. Stukel, Moira Décima, and Michael R. Landry
Biogeosciences, 19, 3595–3624, https://doi.org/10.5194/bg-19-3595-2022,https://doi.org/10.5194/bg-19-3595-2022, 2022
Short summary

Cited articles

Arblaster, J. M. and Meehl, G. A.: Contributions of external forcings to southern annular mode trends, J. Climate, 19, 2896–2905, 2006.
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean, 1997–2006, J. Geophys. Res.-Oceans, 113, C08004, https://doi.org/https://doi.org/10.1029/2007jc004551, 2008.
Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic ocean carbon cycle model, Geosci. Model Dev., 3, 143–167, https://doi.org/10.5194/gmd-3-143-2010, 2010.
Atkinson, A., Siegel, V., Pakhomov, E., and Rothery, P.: Long-term decline in krill stock and increase in salps within the Southern Ocean, Nature, 432, 100–103, 2004.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005gb002591, 2006.
Download
Short summary
Using the latest earth system models, we find that shifts in nutrient and light availability with future climate warming drive latitudinally banded changes in Southern Ocean phytoplankton distributions, which have the potential to significantly alter nutrient cycling as well as higher trophic level productivity throughout the global ocean. Spatial patterns in the modelled mechanisms driving these predicted phytoplankton trends qualitatively agree with recent observations.
Altmetrics
Final-revised paper
Preprint