Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 12, issue 11
Biogeosciences, 12, 3447–3467, 2015
https://doi.org/10.5194/bg-12-3447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 12, 3447–3467, 2015
https://doi.org/10.5194/bg-12-3447-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Jun 2015

Research article | 05 Jun 2015

Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes

Q. Xin et al.
Related authors  
A simple time-stepping scheme to simulate leaf area index, phenology, and gross primary production across deciduous broadleaf forests in the eastern United States
Qinchuan Xin, Yongjiu Dai, and Xiaoping Liu
Biogeosciences, 16, 467–484, https://doi.org/10.5194/bg-16-467-2019,https://doi.org/10.5194/bg-16-467-2019, 2019
Short summary
Land surface phenological response to decadal climate variability across Australia using satellite remote sensing
M. Broich, A. Huete, M. G. Tulbure, X. Ma, Q. Xin, M. Paget, N. Restrepo-Coupe, K. Davies, R. Devadas, and A. Held
Biogeosciences, 11, 5181–5198, https://doi.org/10.5194/bg-11-5181-2014,https://doi.org/10.5194/bg-11-5181-2014, 2014
Related subject area  
Biogeochemistry: Modelling, Terrestrial
Modelling the response of net primary productivity of the Zambezi teak forests to climate change along a rainfall gradient in Zambia
Justine Ngoma, Maarten C. Braakhekke, Bart Kruijt, Eddy Moors, Iwan Supit, James H. Speer, Royd Vinya, and Rik Leemans
Biogeosciences, 16, 3853–3867, https://doi.org/10.5194/bg-16-3853-2019,https://doi.org/10.5194/bg-16-3853-2019, 2019
Short summary
Three decades of simulated global terrestrial carbon fluxes from a data assimilation system confronted with different periods of observations
Karel Castro-Morales, Gregor Schürmann, Christoph Köstler, Christian Rödenbeck, Martin Heimann, and Sönke Zaehle
Biogeosciences, 16, 3009–3032, https://doi.org/10.5194/bg-16-3009-2019,https://doi.org/10.5194/bg-16-3009-2019, 2019
Short summary
Using a modified DNDC biogeochemical model to optimize field management of a multi-crop (cotton, wheat, and maize) system: a site-scale case study in northern China
Wei Zhang, Chunyan Liu, Xunhua Zheng, Kai Wang, Feng Cui, Rui Wang, Siqi Li, Zhisheng Yao, and Jiang Zhu
Biogeosciences, 16, 2905–2922, https://doi.org/10.5194/bg-16-2905-2019,https://doi.org/10.5194/bg-16-2905-2019, 2019
Short summary
Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data–model comparison
Susan J. Cheng, Peter G. Hess, William R. Wieder, R. Quinn Thomas, Knute J. Nadelhoffer, Julius Vira, Danica L. Lombardozzi, Per Gundersen, Ivan J. Fernandez, Patrick Schleppi, Marie-Cécile Gruselle, Filip Moldan, and Christine L. Goodale
Biogeosciences, 16, 2771–2793, https://doi.org/10.5194/bg-16-2771-2019,https://doi.org/10.5194/bg-16-2771-2019, 2019
Short summary
Leaf Area Index Changes Explain GPP Variation across an Amazon Drought Stress Gradient
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-175,https://doi.org/10.5194/bg-2019-175, 2019
Revised manuscript accepted for BG
Short summary
Cited articles  
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, 29–64, 1998.
Baldocchi, D., Hutchison, B., Matt, D., and McMillen, R.: Canopy radiative transfer models for spherical and known leaf inclination angle distributions: a test in an oak-hickory forest, J. Appl. Ecol., 22, 539–555, 1985.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., and Evans, R.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, 2003.
Ball, J. T., Woodrow, I., and Berry, J.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., Springer Netherlands, 221–224, 1987.
Publications Copernicus
Download
Short summary
We advance the Geometric Optical Radiative Transfer model and derive analytical solutions to radiation absorption by sunlit/shaded leaves. We link the radiative transfer process with the biochemical diffusion process to model canopy photosynthesis. Modeled gross primary production could explain more than 80% variance of flux tower measurements at both hourly and daily scales.
We advance the Geometric Optical Radiative Transfer model and derive analytical solutions to...
Citation