Articles | Volume 12, issue 10
https://doi.org/10.5194/bg-12-3029-2015
https://doi.org/10.5194/bg-12-3029-2015
Research article
 | 
22 May 2015
Research article |  | 22 May 2015

Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

C. M. Boot, M. Haddix, K. Paustian, and M. F. Cotrufo

Related authors

Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021,https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Unifying soil organic matter formation and persistence frameworks: the MEMS model
Andy D. Robertson, Keith Paustian, Stephen Ogle, Matthew D. Wallenstein, Emanuele Lugato, and M. Francesca Cotrufo
Biogeosciences, 16, 1225–1248, https://doi.org/10.5194/bg-16-1225-2019,https://doi.org/10.5194/bg-16-1225-2019, 2019
Short summary
Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie
E. Ashley Shaw, Karolien Denef, Cecilia Milano de Tomasel, M. Francesca Cotrufo, and Diana H. Wall
SOIL, 2, 199–210, https://doi.org/10.5194/soil-2-199-2016,https://doi.org/10.5194/soil-2-199-2016, 2016
Short summary
Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils
P. Smith, M. F. Cotrufo, C. Rumpel, K. Paustian, P. J. Kuikman, J. A. Elliott, R. McDowell, R. I. Griffiths, S. Asakawa, M. Bustamante, J. I. House, J. Sobocká, R. Harper, G. Pan, P. C. West, J. S. Gerber, J. M. Clark, T. Adhya, R. J. Scholes, and M. C. Scholes
SOIL, 1, 665–685, https://doi.org/10.5194/soil-1-665-2015,https://doi.org/10.5194/soil-1-665-2015, 2015
Short summary
Organic nitrogen storage in mineral soil: implications for policy and management
A. H. Bingham and M. F. Cotrufo
SOIL Discuss., https://doi.org/10.5194/soild-2-587-2015,https://doi.org/10.5194/soild-2-587-2015, 2015
Manuscript not accepted for further review

Related subject area

Biogeochemistry: Soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
Imane Slimani, Xia-Zhu Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023,https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Soil priming effects and involved microbial community along salt gradients
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-114,https://doi.org/10.5194/bg-2023-114, 2023
Revised manuscript accepted for BG
Short summary
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023,https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023,https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023,https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary

Cited articles

Abiven, S., Hengartner, P., Schneider, M. P. W., Singh, N., and Schmidt, M. W. I.: Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal, Soil Biol. Biochem., 43, 1615–1617, 2011.
Baldock, J. A. and Smernik, R. J.: Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood, Org. Geochem., 33, 1093–1109, 2002.
Bird, M. I., Moyo, C., Veenendaal, E. M., Lloyd, J., and Frost, P.: Stability of elemental carbon in a savanna soil, Global Biogeochem. Cy., 13, 923–932, 1999.
Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A.: The Pyrogenic Carbon Cycle, Annu. Rev. Earth Pl. Sc., 43, https://doi.org/10.1146/annurev-earth-060614-105038, 2015.
Boot, C. M., Cotrufo, M. F., Haddix, M. L., Schmeer, S., Kampf, S., Brogan, D., Nelson, P., Rhoades, C. C., Ryan-Burkett, S., Rathburn, S., and Hall, E. K.: Transport of Black Carbon Following Wildfire: Contributions of Short and Long-term Controls, American Geophysical Union, San Francisco, CA, 2014.
Download
Short summary
Black carbon (BC) includes everything from charred wood to soot, making it difficult to measure and limiting our understanding of the amount in soils. We studied the effects of fire severity and degree of hillslope on BC quantities in forest floor and soil samples after the High Park wildfire that took place in northwestern Colorado, June 2012. Using molecular markers we found that the majority of BC remained in the litter 4 months post fire, regardless of fire intensity or degree of hillslope.
Altmetrics
Final-revised paper
Preprint