Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 12, 281-297, 2015
https://doi.org/10.5194/bg-12-281-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
16 Jan 2015
CH4 and N2O dynamics in the boreal forest–mire ecotone
B. Tupek1, K. Minkkinen1, J. Pumpanen1, T. Vesala2, and E. Nikinmaa1 1Department of Forest Sciences, P.O. Box 27, 00014 University of Helsinki, Finland
2Department of Physics, P.O. Box 48, 00014 University of Helsinki, Finland
Abstract. In spite of advances in greenhouse gas research, the spatiotemporal CH4 and N2O dynamics of boreal landscapes remain challenging, e.g., we need clarification of whether forest–mire transitions are occasional hotspots of landscape CH4 and N2O emissions during exceptionally high and low ground water level events.

In our study, we tested the differences and drivers of CH4 and N2O dynamics of forest/mire types in field conditions along the soil moisture gradient of the forest–mire ecotone. Soils changed from Podzols to Histosols and ground water rose downslope from a depth of 10 m in upland sites to 0.1 m in mires. Yearly meteorological conditions changed from being exceptionally wet to typical and exceptionally dry for the local climate. The median fluxes measured with a static chamber technique varied from −51 to 586 μg m−2 h−1 for CH4 and from 0 to 6 μg m−2 h−1 for N2O between forest and mire types throughout the entire wet–dry period.

In spite of the highly dynamic soil water fluctuations in carbon rich soils in forest–mire transitions, there were no large peak emissions in CH4 and N2O fluxes and the flux rates changed minimally between years. Methane uptake was significantly lower in poorly drained transitions than in the well-drained uplands. Water-saturated mires showed large CH4 emissions, which were reduced entirely during the exceptional summer drought period. Near-zero N2O fluxes did not differ significantly between the forest and mire types probably due to their low nitrification potential. When upscaling boreal landscapes, pristine forest–mire transitions should be regarded as CH4 sinks and minor N2O sources instead of CH4 and N2O emission hotspots.


Citation: Tupek, B., Minkkinen, K., Pumpanen, J., Vesala, T., and Nikinmaa, E.: CH4 and N2O dynamics in the boreal forest–mire ecotone, Biogeosciences, 12, 281-297, https://doi.org/10.5194/bg-12-281-2015, 2015.
Publications Copernicus
Download
Share