Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 12, 2641-2654, 2015
https://doi.org/10.5194/bg-12-2641-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
06 May 2015
Peruvian upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency, and heterotrophic energy production
T. T. Packard1, N. Osma1, I. Fernández-Urruzola1, L. A. Codispoti2, J. P. Christensen3, and M. Gómez1 1Marine Ecophysiology Group (EOMAR), Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira 35017, Las Palmas de Gran Canaria, Spain
2Horn Point Laboratory, University of Maryland, 21613-0775 Cambridge, MD, USA
3Green Eyes LLC, Easton, MD 21601, USA
Abstract. Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0 (z/z0)b, similar to the vertical carbon flux profile. Furthermore, because both ocean processes are closely related, conceptually and mathematically, each can be calculated from the other. The exponent b, always negative, defines the maximum curvature of the respiration–depth profile and controls the carbon flux. When |b| is large, the carbon flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high, allowing these waters to maintain high productivity. The opposite occurs when |b| is small. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting both vertical FC as well as the capacity of epipelagic ecosystems to retain their nutrients. The ratio of seawater RCO2 to incoming FC is the NRE, a new metric that represents nutrient regeneration in a seawater layer in reference to the nutrients introduced into that layer via FC. A depth profile of FC is the integral of water column respiration. This relationship facilitates calculating ocean sections of FC from water column respiration. In an FC section and in a NRE section across the Peruvian upwelling system we found an FC maximum and a NRE minimum extending down to 400 m, 50 km off the Peruvian coast over the upper part of the continental slope. Finally, considering the coupling between respiratory electron transport system activity and heterotrophic oxidative phosphorylation promoted the calculation of an ocean section of heterotrophic energy production (HEP). It ranged from 250 to 500 J d−1 m−3 in the euphotic zone to less than 5 J d−1 m−3 below 200 m on this ocean section.

Citation: Packard, T. T., Osma, N., Fernández-Urruzola, I., Codispoti, L. A., Christensen, J. P., and Gómez, M.: Peruvian upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency, and heterotrophic energy production, Biogeosciences, 12, 2641-2654, https://doi.org/10.5194/bg-12-2641-2015, 2015.
Publications Copernicus
Download
Short summary
Ocean carbon flux, seafloor respiration, and seafloor carbon burial are calculated from plankton respiration. Based on this respiration, a new parameter, the heterotrophic energy production - the rate of ATP generated in seawater, is calculated, and a new concept, the nutrient retention efficiency (NRE), and its ocean variability, is developed and demonstrated. Finally, the curvature of the respiration profile is discovered to be the control - key for NRE and carbon flux.
Ocean carbon flux, seafloor respiration, and seafloor carbon burial are calculated from plankton...
Share