First on-line isotopic characterization of N\(_2\O\) above intensively managed grassland

B. Wolf\(^1,2\), L. Merbold\(^3\), C. Decock\(^3\), B. Tuzson\(^1\), E. Harris\(^1\), J. Six\(^3\), L. Emmenegger\(^1\), and J. Mohn\(^1\)

\(^1\)Laboratory for Air Pollution/Environmental Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
\(^2\)Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
\(^3\)Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland

Correspondence to: B. Wolf (benjamin.wolf@kit.edu)

Received: 9 December 2014 – Published in Biogeosciences Discuss.: 23 January 2015
Revised: 1 April 2015 – Accepted: 3 April 2015 – Published: 29 April 2015

Abstract. The analysis of the four main isotopic N\(_2\)O species (\(^{14}\)N\(^{14}\)N\(^{16}\)O, \(^{14}\)N\(^{15}\)N\(^{16}\)O, \(^{15}\)N\(^{14}\)N\(^{16}\)O, \(^{14}\)N\(^{14}\)N\(^{18}\)O) and especially the intramolecular distribution of \(^{15}\)N (\textquotedblleft site preference\textquotedblright, SP) has been suggested as a tool to distinguish source processes and to help constrain the global N\(_2\)O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass-spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows the selective high-precision analysis of N\(_2\)O isotopic species at trace levels and is suitable for in situ measurements.

Here, we present results from the first field campaign, conducted on an intensively managed grassland site in central Switzerland. N\(_2\)O mole fractions and isotopic composition were determined in the atmospheric surface layer (at 2.2 m height) at a high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N\(_2\)O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11 ‰ for \(^{15}\)N\(^\text{N}_2\), \(^{15}\)N\(^\text{N}_2\) and \(^{18}\)O, respectively. Simultaneous eddy-covariance N\(_2\)O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N\(_2\)O.

Our measurements indicate that, in general, nitrifier-denitrification and denitrification were the prevalent sources of N\(_2\)O during the campaign and that variations in isotopic composition were due to alterations in the extent to which N\(_2\)O was reduced to N\(_2\) rather than to other pathways, such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intramolecular \(^{15}\)N site preference (SP), \(^{15}\)N\(^\text{N}_2\) and \(^{18}\)O, suggesting that nitrifier-denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. The flux-averaged isotopic composition of N\(_2\)O from intensively managed grassland was 6.9 ± 4.3, −17.4 ± 6.2 and 27.4 ± 3.6 ‰ for SP, \(^{15}\)N\(^\text{N}_2\) and \(^{18}\)O, respectively. The approach presented here is capable of providing long-term data sets also for other N\(_2\)O-emitting ecosystems, which can be used to further constrain global N\(_2\)O inventories.

1 Introduction

Atmospheric nitrous oxide (N\(_2\)O) mole fraction has been increasing since preindustrial times, predominately due to increased agricultural activity (Davidson, 2009; Mosier et al., 1998). Owing to the approximately 300 times higher global warming potential (GWP) compared to CO\(_2\), this greenhouse gas (GHG) currently accounts for 6 % of total anthropogenic radiative forcing (Myhre et al., 2013). Recent estimates showed that N\(_2\)O is, in addition, the single most important ozone-depleting substance (Ravishankara et al., 2009). Because at least 60 % of total anthropogenic N\(_2\)O emissions are attributed to food production (Syakila and Kroeze, 2011), a growing human population and meat consumption per capita as well as biofuel production will accelerate the rate of increase in atmospheric N\(_2\)O concentration. Hence, the de-
development of adequate mitigation strategies is pertinent and requires a better understanding of the processes driving \(\text{N}_2\text{O} \) fluxes. To date, nitrification, nitrifier-denitrification and denitrification are considered to constitute the dominant \(\text{N}_2\text{O} \)-producing processes, especially in agricultural soils (Wrage et al., 2001). Other \(\text{N}_2\text{O} \) source processes such as abiotic \(\text{N}_2\text{O} \) production, co-denitrification and heterotrophic nitrification have also been observed; a concise overview of observed processes is given elsewhere (Butterbach-Bahl et al., 2013). This complexity inherent in the \(\text{N} \) cycle and associated transformation processes is a major challenge in developing mitigation strategies, as the attribution of \(\text{N}_2\text{O} \) production to the respective processes is required to tailor target-oriented actions (Baggs, 2008). Approaches for apportioning \(\text{N}_2\text{O} \) emissions to nitrification and denitrification and \(\text{N}_2\text{O} \) reduction to \(\text{N}_2 \) (source partitioning) have mostly relied on acetylene (\(\text{C}_2\text{H}_2 \)) inhibition and isotope labeling (Groffman et al., 2006), but denitrification rates are underestimated by the \(\text{C}_2\text{H}_2 \) method (Butterbach-Bahl et al., 2013; Groffman et al., 2006; Watts and Seitzinger, 2000). Isotope labeling approaches are vulnerable to incomplete diffusion of the tracer and to the stimulation of process rates by the addition of the labeled substrates themselves (Groffman et al., 2006). Changes in the natural abundance of \(^{15}\text{N} \) and \(^{18}\text{O} \) in \(\text{N}_2\text{O} \) have been explored to investigate \(\text{N}_2\text{O} \) production processes, but the \(\delta^{15}\text{N} \) and \(\delta^{18}\text{O} \) determined depend on both fractionation factors and the isotopic composition of precursors, which in turn exhibit strong variations (Baggs, 2008; Bedard-Haughn et al., 2003; Heil et al., 2014; Toyoda et al., 2011).

\(\text{N}_2\text{O} \) is a linear molecule and four main isotopic species can be discerned: \(^{14}\text{N}^{14}\text{N}^{16}\text{O} \), \(^{14}\text{N}^{15}\text{N}^{16}\text{O} \), \(^{15}\text{N}^{14}\text{N}^{16}\text{O} \) and \(^{14}\text{N}^{14}\text{N}^{18}\text{O} \). The isotopic species \(^{14}\text{N}^{14}\text{N}^{16}\text{O} \), \(^{14}\text{N}^{15}\text{N}^{16}\text{O} \) and \(^{14}\text{N}^{15}\text{N}^{18}\text{O} \) (or \(^{15}\text{N}^{14}\text{N}^{16}\text{O} \)) are isotopologues, while \(^{14}\text{N}^{15}\text{N}^{16}\text{O} \) and \(^{15}\text{N}^{14}\text{N}^{16}\text{O} \) are isotopomers and will be termed \(^{15}\text{N}^{16}\text{O} - \text{N}_2\text{O} \) in the atmospheric surface layer was determined on-line by using an optimized state-of-the-art laser spectrometer. Using the combination of \(\text{N}_2\text{O} \) isotopic analysis by QCLAS, accompanying eddy-covariance-based \(\text{N}_2\text{O} \) flux measurements as well as the monitoring of environmental conditions and inorganic nitrogen concentrations, our specific objectives for this study were (i) to demonstrate the capability of QCLAS systems for carrying out high-precision isotopic analysis of (soil-emitted) \(\text{N}_2\text{O} \) in ambient air; (ii) to investigate management and weather effects on isotopic composition and source processes; and (iii) to characterize the flux-averaged isotopic composition of \(\text{N}_2\text{O} \) emitted from an intensively managed grassland site.

2 Material and methods

2.1 Study site

The agricultural research station Chamau (CHA) is located in central Switzerland at an elevation of 400 m a.s.l. The experiment was conducted on intensively managed grassland belonging to CHA which is primarily used for fodder production and occasional winter grazing by sheep (Zeeman et al., 2010). The soil type is a Cambisol with a bulk density of 0.97 g cm\(^{-3}\), 30.6 % sand, 47.7 % silt and 21.8 % clay in the top 10 cm and pH of 5.7–6.2. Soil carbon and nitrogen con-
tent in the top 10 cm was 37.9 and 4.1 g kg$^{-1}$ (Roth, 2006). Mean annual temperature and annual precipitation are 9.1°C and 1151 mm, respectively (Zeeman et al., 2010). Management practices aim at fodder production and consist of mowing followed by slurry application, with up to six mowing and slurry applications per year and the occasional grazing of sheep and cattle in October and November. During the campaign in summer 2013, three management cycles were carried out. Harvest dates were 6 June, 11 July and 21 August, and slurry was applied within 10 days after each mowing event. Nitrogen input was calculated from the amount of slurry applied to the field and the N concentration determined (Labor für Boden- und Umweltanalytik, Eric Schweizer AG, Thun, Switzerland) in a sample drawn from the supply to the trailing hose applicator. The applied N amounted to 30, 40 and 43.3 kg N ha$^{-1}$ for the first, second and third application, respectively. Grassland is reestablished via ploughing and resowing approximately every 10 years. The last reestablishment event took place in 2012 (Merbold et al., 2014).

2.2 Instrumental setup for analysis of N$_2$O isotopic ratios

The four most abundant N$_2$O isotopic species were quantified using a modified QCLAS (Aerodyne Research Inc., Billerica MA, USA) equipped with a continuous-wave quantum cascade laser (cw-QCL) with spectral emission at 2203 cm$^{-1}$, an astigmatic Herriott multi-pass absorption cell (204 m path length, AMAC-200) and a reference path with a short (5 cm) N$_2$O-filled cell to lock the laser emission frequency (Tuzson et al., 2013). During the campaign, the QCLAS was operated in an air-conditioned trailer located 60 m west of the eddy-covariance (EC) tower. This trailer position contributes < 20% to the main flux and is at the far side of the prevailing wind direction (Zeeman et al., 2010). The sample air inlet was installed next to the inlet of the EC tower (2.2 m height). Sample air was drawn through a PTFE tube (4 mm ID) by a membrane pump (PM 25032-022, KNF Neuberger, Switzerland). Upstream of the pump, the sample air was pre-dried with a permeation drier (MD-050-72S-1, PermaPure Inc., USA). Following the pump, the pressure was maintained at 4 bar overpressure using a pressure relief valve. Humidity as well as CO$_2$ were quantitatively removed from the gas flow by applying a chemical trap filled with Ascarite (7 g, 10–35 mesh, Fluka, Switzerland) bracketed by Mg(ClO$_4$)$_2$ (2 x 1.5 g, Fluka, Switzerland). Finally, the sample gas was passed through a sintered metal filter (SS-6F-MM-2, Swagelok, USA) and directed to a preconcentration unit described in detail previously (Mohn et al., 2010, 2012). For an increase in N$_2$O mixing ratios from ambient level to around 50 ppm N$_2$O, approx. 8 L of ambient air were preconcentrated. Afterwards, the preconcentrated N$_2$O was introduced into the evacuated multi-pass cell of the QCLAS. Isotopic fractionation during preconcentration (increase by 0.31 ± 0.10, 0.34 ± 0.16 and 0.29 ± 0.07 ‰ for δ15N$^\delta$, δ15N$^\beta$ and δ18O, respectively) was quantified by the preconcentration of N$_2$O with a known isotopic composition and subsequently corrected. The compatibility of N$_2$O isotope analysis by QCLAS with isotope ratio mass spectrometry (IRMS) laboratories was recently demonstrated in an inter-laboratory comparison campaign (Mohn et al., 2014).

2.3 Measurement and calibration strategy

To ensure high accuracy and repeatability of the analytical system, a measurement and calibration strategy similar to the one presented by Mohn et al. (2012) was applied. It is based on two standard gases differing in N$_2$O isotopic composition, which were produced by the dynamic dilution of pure medical N$_2$O (Pangas, Switzerland) with defined amounts of isotopically pure (> 98 %) 14N15N$^\delta$O (Cambridge Isotope Laboratories, USA) and (> 99.95 %) 14N$^\delta$NO (ICON Services Inc., USA). Subsequent gravimetric dilution with high-purity synthetic air (99.999 %, Messer Schweiz AG) resulted in pressurized gas mixtures with 90 ppm N$_2$O (10$^{-6}$ moles of trace gas per mole of dry air). Both standards were calibrated against primary standards which were previously measured by the Tokyo Institute of Technology (TTT, Toyoda and Yoshida) to anchor δ values to the international isotopic standard scales. The first standard (S1, Table 1) was used as an anchor point to the international δ scale and used as input data for data analysis algorithms (see data processing). Therefore, the N$_2$O isotopic composition of S1 was tar-

Table 1. Reference gas and compressed air tanks used during the campaign. S1 and S2 represent the anchor and calibration standard. C1 and C2 are the target gases used for determination of system performance. The reported precision is 1σ.

<table>
<thead>
<tr>
<th>Tank</th>
<th>δ15N$^\alpha$ (%)</th>
<th>δ15N$^\beta$ (%)</th>
<th>δ18O (%)</th>
<th>δ15N$^{\text{bulk}}$ (%)</th>
<th>SP (%)</th>
<th>mixing ratio (ppm)/(ppb)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>15.66 ± 0.03</td>
<td>−3.22 ± 0.13</td>
<td>34.89 ± 0.05</td>
<td>6.22 ± 0.07</td>
<td>18.88 ± 0.13</td>
<td>90.09 ± 0.01</td>
</tr>
<tr>
<td>S2</td>
<td>10.38 ± 0.03</td>
<td>−10.55 ± 0.1</td>
<td>25.44 ± 0.06</td>
<td>−0.09 ± 0.05</td>
<td>20.93 ± 0.10</td>
<td>87.28 ± 0.003</td>
</tr>
<tr>
<td>C1</td>
<td>15.40 ± 0.08</td>
<td>−3.04 ± 0.06</td>
<td>43.65 ± 0.08</td>
<td>6.18 ± 0.05</td>
<td>18.44 ± 0.10</td>
<td>327.01 ± 0.05</td>
</tr>
<tr>
<td>C2</td>
<td>15.65 ± 0.17</td>
<td>−4.27 ± 0.08</td>
<td>44.20 ± 0.07</td>
<td>5.69 ± 0.09</td>
<td>19.92 ± 0.19</td>
<td>327.45 ± 0.05</td>
</tr>
</tbody>
</table>

* ppm for S1 and S2, ppb for C1, C2.
Table 2. Adjusted r^2 and p values for regression analysis of Keeling-plot-derived isotopic compositions in soil-emitted N$_2$O versus auxiliary variables N$_2$O flux ($f_{\text{N}_2\text{O}}$), difference of maximum and minimum concentration over a noon-to-noon period (ΔN$_2$O), precipitation (prcp), soil moisture (wfps), and nutrient concentrations (NO$_3^-$, NH$_4^+$ and DOC).

<table>
<thead>
<tr>
<th>Explanatory</th>
<th>SP r^2</th>
<th>SP p</th>
<th>δ^{15}N$_{\text{bulk}}$ r^2</th>
<th>δ^{15}N$_{\text{bulk}}$ p</th>
<th>δ^{18}O r^2</th>
<th>δ^{18}O p</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{\text{N}_2\text{O}}$</td>
<td>0.14</td>
<td>**</td>
<td>0.04</td>
<td>0.06</td>
<td>0.16</td>
<td>**</td>
<td>62</td>
</tr>
<tr>
<td>ΔN$_2$O</td>
<td>0.09</td>
<td>*</td>
<td>0.1</td>
<td>*</td>
<td>0.11</td>
<td>*</td>
<td>65</td>
</tr>
<tr>
<td>prcp</td>
<td>0.24</td>
<td>**</td>
<td>0.03</td>
<td>0.08</td>
<td>0.24</td>
<td>**</td>
<td>62</td>
</tr>
<tr>
<td>wfps</td>
<td>0.14</td>
<td>*</td>
<td>0.29</td>
<td>**</td>
<td>-0.009</td>
<td>0.52</td>
<td>65</td>
</tr>
<tr>
<td>T</td>
<td>0.22</td>
<td>**</td>
<td>0.30</td>
<td>**</td>
<td>0.12</td>
<td>*</td>
<td>65</td>
</tr>
<tr>
<td>DOC</td>
<td>0.23</td>
<td>*</td>
<td>0.30</td>
<td>*</td>
<td>0.03</td>
<td>0.23</td>
<td>18</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>0.04</td>
<td>0.14</td>
<td>0.27</td>
<td>*</td>
<td>0.16</td>
<td>*</td>
<td>31</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>-0.03</td>
<td>0.75</td>
<td>-0.03</td>
<td>0.89</td>
<td>-0.03</td>
<td>0.93</td>
<td>31</td>
</tr>
</tbody>
</table>

Significance codes: * $p < 0.05$; ** $p < 0.001$. Sample size (n) differs due to data availabilities.

Data processing is based on individual mixing ratios of the four main N$_2$O isotopic species and spectrometer characteristics as recorded by the instrument’s software (TDLWinTel, Aerodyne Research Inc., Billerica, MA, USA). In the first step, variations in the isotope ratios induced by drifts in the instrument working parameters during the field operation were corrected. A linear additive model explaining the deviation of isotope ratios R^α, R^β and R^{18}O for repeated measurements of standard S1 from their mean value by absorption cell temperature (T_1), laser temperature (T_2), line position (LP) and pressure (p) was calibrated based on S1 injections. For isotope ratios of S1, S1b, S2, sample air and compressed air, these systematic deviations were corrected based on the respective values of T_1, T_2, LP and p. In a second step, concentration dependence of isotope ratios, determined using the measurements of S1 and S1b, was addressed with corrections (0.013, 0.028 and 0.004‰ ppm$^{-1}$ for δ^{15}N$_{\text{at}}$, δ^{15}N$_{\text{b}}$ and δ^{18}O) being in the same range as described earlier (Mohn et al., 2012). Subsequently, remaining drifts were corrected based on the analysis of S1. Finally, isotope ratios were converted to δ values using a two-point calibration derived from corrected values of S1 and S2.

2.4 Data processing

The isotopic composition of the source process “soil N$_2$O emission” was derived using the Keeling plot approach (Keeling, 1958), where δ values measured (here at 2.2 m height) are plotted versus the inverse of N$_2$O mole fractions. The intercept of the linear regression line can be interpreted as the isotopic composition of soil-emitted N$_2$O (Pataki et al., 2003). Therefore, the determination of soil N$_2$O isotopic composition requires an increase in N$_2$O mole fraction. During the day, turbulence mixes surface layer air into the atmosphere, leading to a close resemblance to background air. As the N$_2$O isotopic composition of surface layer air is mainly a mixture of soil-derived and background composition, the second standard (S2, Table 2) used for span correction was depleted in δ^{15}N$_{\text{at}}$, δ^{15}N$_{\text{b}}$ and δ^{18}O compared to background air in accordance with the expected terrestrial source signatures.

The measurement protocol started with the injection of S1, dynamically diluted to 50 ppm, the mole fraction of ambient N$_2$O after preconcentration. After flushing the absorption cell with synthetic air, S2 was injected and also diluted to 50 ppm. For the determination of the slight concentration dependence already reported (Mohn et al., 2012), S1 was injected again but at a higher mole fraction of 67 ppm (later referred to as S1h). This mole fraction represents the mole fraction expected after the preconcentration of high-concentration surface layer air. Subsequently, S1 was injected again and diluted to 50 ppm, before the cell was filled with preconcentrated ambient N$_2$O (A). This subroutine (S1 + A) of injection of S1 and preconcentrated ambient N$_2$O took 35 min and was repeated three times. For an independent determination of repeatability, the fourth sample was preconcentrated compressed air (target gas). During the campaign, two compressed air cylinders (C1 and C2, referred to as target gas) were used. The isotopic composition and N$_2$O mixing ratio of both cylinders were determined in the laboratory prior to the campaign start (Table 1). N$_2$O mole fractions and isotopic composition analyzed in the laboratory and at the field site agreed within their analytical uncertainty. Following target gas analysis, S1 and S1h were analyzed again. Another set of three subroutines S1+A completed one run. One complete cycle of 6 ambient air samples and one compressed air sample took 340 min, leading to approx. 25 ambient air samples being analyzed during 24 h. N$_2$O mole fractions were determined according to Mohn et al. (2012).
Ammonium \((\text{NH}_4^+) \) and nitrate \((\text{NO}_3^-) \) concentrations were determined from soil \((0–20 \text{ cm depth})\) sampled at 10 positions along a transect within the footprint of the EC measurements following the predominant wind direction. Samples were taken weekly throughout the campaign or daily during mowing and slurry application events. Per sample, \(\sim 15 \text{ g of fresh soil were added to specimen vessels containing 50 mL, 1 M KCl. After 1 h on a shaker, the supernatant was filtered (Whatman no. 42 ashless filter paper, 150 mm diameter) and analyzed colorimetrically for } \text{NH}_4^+ \text{ and } \text{NO}_3^- \). For a subset of extracts, we determined dissolved organic carbon (DOC) concentrations by combustion of KCl extracts using a total organic C analyzer (Shimadzu TOC-V, Columbia, MD, USA).

Soil temperatures and volumetric soil moisture contents at 10 cm depth were measured at the same 10 locations along the transect (5TM-sensors, Decagon Devices Ltd., Pullman, USA). Data were stored as 10 min averages on a data logger (EM50, Decagon Devices Ltd., Pullman, USA). The volumetric water content was converted to water-filled pore space \((\text{wfps})\) using a bulk density of \(1.09 \text{ g cm}^{-2}\). Precipitation was measured with a tipping bucket rain gauge \((\text{Type 10116, Toss GmbH, Potsdam, Germany})\) and stored as 10 min averages on a data logger \((\text{CR10X-2M, Campbell Scientific Inc., Logan, USA})\).

3 Results

3.1 Long-term precision for target gas analysis

System performance for \(\text{N}_2\text{O}\) mole fractions and isotopic composition was determined based on the repeated analysis of compressed air from target gas tanks \((\text{C}1, \text{C}2)\). There was no significant drift in the \(\delta\) values and \(\text{N}_2\text{O}\) mole fractions, indicating the stability of the applied measurement technique. Repeatability, calculated as the standard deviation \((\sigma)\) of 331 target gas measurements, amounted to 0.20, 0.12, 0.10, 0.12 and 0.22\% for \(\delta^{15}\text{N}\), \(\delta^{15}\text{N}\), \(\delta^{18}\text{O}\), \(\delta^{15}\text{N}_{\text{bulk}}\) and SP, respectively \((\text{Fig. 1})\). The standard deviation for the \(\text{N}_2\text{O}\) mole fraction of the target gas was 0.25 ppb.

3.2 \(\text{N}_2\text{O}\) mole fractions and isotopic composition at 2.2 m height

Air samples were taken at 2.2 m height, which is within the lowest 10 \% of the atmospheric boundary layer \((\text{ABL})\) where mechanical generation of turbulence exceeds buoyant generation or consumption. This part of the ABL is called surface layer; hence, corresponding air samples are referred to as surface layer air samples. \(\text{N}_2\text{O}\) isotopic composition of the surface layer air samples \((n = 2130)\) ranged from 2.5 to 16.1 \%, \(\sim 11.9\) to \(2.4\%\), 37.6 to 44.6 \%, \(-4.6\) to 6.6 \%, and 14.3 to 19.3 \% for \(\delta^{15}\text{N}, \delta^{15}\text{N}, \delta^{18}\text{O}, \delta^{15}\text{N}_{\text{bulk}}\) and SP, respectively \((\text{Fig. 2})\). Surface layer \(\text{N}_2\text{O}\) mole fractions varied between 325 and 469 ppb and followed a diurnal cycle with...
highest values during the night, when the boundary layer became more stable. Increasing N\textsubscript{2}O mole fractions were associated with decreasing \(\delta\) values, indicating that soil-emitted N\textsubscript{2}O that was mixed into the surface layer was depleted in \(^{15}\text{N}\) as compared to N\textsubscript{2}O in the atmospheric background.

3.3 Auxiliary measurements

Half-hourly N\textsubscript{2}O fluxes were averaged from noon-to-noon (\(f_{N\textsubscript{2}O}\)) and ranged from \(-1\) to \(5\) nmol m-2 s-1. Maximum N\textsubscript{2}O fluxes coincided with an overnight build up in N\textsubscript{2}O mole fractions (\(\Delta N\textsubscript{2}O\)) as analyzed by QCLAS and could not be attributed to slurry application events alone (Fig. 3).

Among the correlations of \(f_{N\textsubscript{2}O}\) and auxiliary variables, only the one with a nitrate concentration (\(r^2 = 0.18\)) was significant (\(p < 0.01\)). Soil water content (wfps) was modulated by precipitation, and two clear states could be identified. During the “wet” part of the campaign, lasting until 7 July, average wfps was \(62 \pm 4\) % and thus was significantly (\(t\) test, \(p < 0.001\)) higher than the average of \(37 \pm 4\) % calculated for the remainder of the campaign (referred to as the “dry” part). Soil temperature did not show such a clear two-phase pattern; however, temperatures during the first, wet part were \(16.7 \pm 4\) °C and thus significantly (\(p < 0.001\)) lower than during the dry phase (\(21.2 \pm 2\) °C).

Background NH\textsubscript{4}+ and NO\textsubscript{3}- concentrations were smaller than \(3\) µg g-1 soil and clearly responded to mowing and slurry application in the second and third management events. The NO\textsubscript{3}- concentration was higher than the NH\textsubscript{4}+ concentration and peaked at \(16\) and \(50\) µg g-1 soil, while NH\textsubscript{4}+ concentration peaked at \(9\) and \(15\) µg g-1 soil for these two management events. In contrast, dissolved organic carbon concentrations (DOC) did not respond to management events but were higher during the dry phase of the campaign (\(p < 0.001\)).

3.4 Isotopic composition of soil-emitted N\textsubscript{2}O

The uncertainty of the determined source isotopic composition was estimated based on the standard error of the Keeling plot intercept and depends on the degree to which soil air accumulates in the surface layer (\(\Delta N\textsubscript{2}O\), Fig. 4). For instance, the intercept (source) standard error ranged from 0.3 to 82 % for SP. To apply the Keeling plot approach only to situations in which soil air accumulated in the surface layer, only source isotopic compositions for overnight increases in N\textsubscript{2}O mole fractions of more than 12 ppb were considered in this study. This filter led to a maximum and average (\(\mu\)) standard error of 6.8 (\(\mu = 2.2\)) %, 4.5 (\(\mu = 1.4\)) % and 2.2 (\(\mu = 1\)) % for SP, \(\delta^{15}\text{N}\)bulk and \(\delta^{18}\text{O}\) isotopic source signatures, respectively.

During the field campaign, the Keeling-plot-derived isotopic composition of soil-emitted N\textsubscript{2}O ranged from 1.4 to 17.3 %, –29 to –3 % and 22.6 to 34.8 % for SP, \(\delta^{15}\text{N}\)bulk and \(\delta^{18}\text{O}\), respectively. All explanatory variables except NH\textsubscript{4}+ and NO\textsubscript{3}- were found to significantly correlate with SP (Table 2). For \(\delta^{15}\text{N}\)bulk, correlations with \(\Delta N\textsubscript{2}O\), wfps, soil temperature, DOC and NO\textsubscript{3}- and for \(\delta^{18}\text{O}\) correlations of \(f_{N\textsubscript{2}O}\), \(\Delta N\textsubscript{2}O\), precipitation, soil temperature and NO\textsubscript{3}- were significant. However, the adjusted \(r^2\) for all regressions was below 0.4; in addition, multiple explanatory variables such as NH\textsubscript{4}+ and NO\textsubscript{3}- or wfps and temperature (Fig. 5) did not increase the explained variance above this value.

3.5 Event-based data aggregation

As already described in the section “Auxiliary measurements”, there was a wet phase (\(n = 27\) Keeling-plot-derived N\textsubscript{2}O isotopic compositions) in the beginning of the campaign, which lasted about 1 month, and a dry phase lasting about 2 months (\(n = 38\)). Therefore, the data set was split into two corresponding parts with averages of \(7.4 \pm 3.6\) vs. \(11.1 \pm 4.2\) % for SP, \(-19 \pm 3.8\) vs. \(-12.5 \pm 5.9\) % for \(\delta^{15}\text{N}\)bulk and \(28.7 \pm 2.2\) vs. \(29.7 \pm 3.4\) % for \(\delta^{18}\text{O}\) in the wet vs. the dry phase, respectively. Averages of SP and \(\delta^{15}\text{N}\)bulk were significantly different (\(p < 0.001\)), but \(\delta^{18}\text{O}\) averages were not. Based on this simple classification, the dry phase contains rewetting events. A rewetting event was defined as a 2-day period starting at the day for which wfps increased. Exclusion of these rewetting events during the dry phase increased average \(\delta\) values (\(n = 30\)) and decreased standard deviations for SP, \(\delta^{15}\text{N}\)bulk and \(\delta^{18}\text{O}\) to \(12.5 \pm 3.4\), \(-10.8 \pm 4.5\) and \(30.7 \pm 2.8\) %. Moreover, the difference in \(\delta^{18}\text{O}\) was significant (\(p < 0.001\)).

In addition to the dry/wet classification, we also defined three subsets representing the N\textsubscript{2}O emission associated with the management events of mowing followed by fertilization (“Mana I”–“Mana III”), one subset representing a rewetting event between Mana II and III (“Rewetting”) and one subset representing background (“BG”), all remaining measure-
B. Wolf et al.: Real-time grassland N\textsubscript{2}O isotopic signature

Figure 3. Noon-to-noon averaged N\textsubscript{2}O flux (\(f_{\text{N}_2\text{O}}\)), overnight increase in N\textsubscript{2}O mole fractions (difference in minimum and maximum N\textsubscript{2}O concentration in a noon-to-noon period; \(\Delta\text{N}_2\text{O}\)), Keeling-plot-derived isotopic composition of soil-emitted N\textsubscript{2}O (SP, \(\delta^{15}\text{N}_{\text{bulk}}, \delta^{18}\text{O}\)), nutrient concentrations (ammonium, nitrate and dissolved organic carbon; DOC), water-filled pore space (wfps), precipitation (prcp) and soil temperature (\(T\)) over the measurement period. Each pair of vertical dashed blue lines indicates the management events mowing (first line) and fertilization (second line). Transparent blue sections represent periods of N\textsubscript{2}O emission influenced by management or rewetting (third section).

There were two distinct rewetting events between management events II and III, but N\textsubscript{2}O isotopic composition is only available for the first one (29–31 July 2014). Isotopic compositions of soil-emitted N\textsubscript{2}O were assigned to subsets of management or rewetting if the associated flux or nutrient concentration was elevated. This classification scheme led to 3 to 7 measurements for management and rewetting events (Fig. 3, underlaid in blue), while 47 measurements were assigned to class BG. Boxplots for SP, \(\delta^{15}\text{N}_{\text{bulk}}, \delta^{18}\text{O}\) and wfps (Fig. 6) showed characteristic \(\delta\) values and wfps for management and rewetting but not for subset BG. Measurements assigned to BG covered practically the whole range of values observed across all the other classes. Therefore, standard deviations for class BG were 1 order of magnitude larger than for the four other classes.

Statistical analysis is confounded by low and unequal sample size, so we compared exclusively the subsets management and rewetting using multiple nonparametric Wilcoxon tests after having checked the homogeneity of variances us-
Figure 4. Standard error for SP (εSP) of soil-derived N₂O estimated by the Keeling plot approach as function of overnight N₂O accumulation in the surface layer. The red dashed line shows 12 ppb increase in N₂O mole fractions. Red dots represent the selected subset.

3.6 Averages of N₂O isotopic signature for intensively managed grassland

Simple averages of the daily isotopic composition of soil-emitted N₂O were 9.6 ± 4.4, −15.2 ± 6.0 and 29.3 ± 3‰ for SP, δ¹⁵Nbulk and δ¹⁸O, respectively (n = 62). Representative isotopic composition of N₂O emitted from a given site or treatment can be estimated based on flux-weighted averages of daily isotopic composition. For some noon-to-noon periods included in the above average, thus including an overnight increase in N₂O mole fractions of at least 12 ppb, negative N₂O fluxes were detected by the EC system (−0.17 ± 2.1 nmol m⁻² s⁻¹; n = 14). This might be due to the uncertainty of N₂O flux measurements, temporal averaging over positive and negative fluxes in a noon-to-noon period, or different footprint regions for N₂O flux and isotopic analysis (flux vs. concentration footprint). To avoid bias in the flux-weighted average of emitted N₂O due to either one of the abovementioned possible reasons, the weighted averages were calculated for positive flux events only. Flux-weighted averages were 6.9 ± 4.3, −17.4 ± 6.2 and 27.4 ± 3.6‰ for SP, δ¹⁵Nbulk and δ¹⁸O, respectively (n = 48).

4 Discussion

4.1 Analytical performance

To our knowledge, only two pilot studies exist demonstrating the potential of QCLAS-based analytical techniques for on-line and high-precision analysis of N₂O mole fractions and isotopic composition in surface layer air. While Mohn et al. (2012) analyzed the three most abundant ¹⁵N isotopocules (¹⁴N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶, ¹⁴N¹⁵N¹⁶O), Harris et al. (2014) included the ¹⁸O isotopologue (¹⁴N¹⁴N¹⁸O). In both studies, however, the instrument was located in the laboratory. Based on 3 weeks of measurements, Mohn et al. (2012) reported a precision of 0.24 and 0.17‰ for δ¹⁵Nα and δ¹⁵Nβ, respectively, and Harris et al. (2014) reported 0.17, 0.19 and 0.32‰ for δ¹⁵Nα, δ¹⁵Nβ and δ¹⁸O, respectively, for a 12-day period. In both studies, in accordance with the present study, ana-
lytical performance was determined based on the repeated analysis of compressed air samples. Thereby, the analytical precision reached in the present study was distinctly higher for $\delta^{15}N$ and $\delta^{18}O$ and similar for $\delta^{15}N$ compared to these two previous studies, even though the measurements were done under field conditions and over a much longer, 3-month period. This confirms the high level of precision associated with the QCLAS-based determination of N$_2$O isotopic composition. Standard errors for Keeling plot intercepts (Fig. 4) confirm that this precision is sufficient to resolve the variability of atmospheric N$_2$O sampled close to the ground. As our instrument was located directly at the field site and measurements were conducted over a period of more than 3 months, our study indicates that this level of repeatability can be achieved both on long timescales and in the field.

4.2 N$_2$O isotopic composition in the atmospheric surface layer (2.2 m height)

In our study, δ values of single preconcentrated air samples were between atmospheric background and 14.3‰ (SP) and $-4.7‰$ ($\delta^{15}N_{bulk}$). Mohn et al. (2012) reported similar values between atmospheric background and 12% (SP) and $-4%$ ($\delta^{15}N_{bulk}$). Therefore, the variation observed in both studies is much higher compared to the measurements by Harris et al. (2014), where the N$_2$O isotopic composition deviated only slightly from atmospheric background. A consistent decrease in $\delta^{15}N_{bulk}$ in parallel with increasing N$_2$O mole fractions (accumulation of soil-derived N$_2$O) confirms that the soil N$_2$O source is depleted in 15N-N$_2$O relative to ambient N$_2$O (Toyoda et al., 2013). A similar pattern was found for $\delta^{18}O$; an increase in N$_2$O mole fraction was associated with a decrease in 18O-N$_2$O, again indicating that soil emissions were depleted in 18O-N$_2$O with respect to the atmospheric background. In contrast, Harris et al. (2014) reported a decoupling of δ^{18}O and $\delta^{15}N_{bulk}$. This may have been due to only marginal influence of soil-emitted N$_2$O since the measurements were carried out in an urban area and approx. 95 m above the ground. Studies on N$_2$O derived from combustion processes indicate that some of these sources might be less depleted or even enriched in 15N-N$_2$O compared to ambient N$_2$O (Harris et al., 2015; Ogawa and Yoshida, 2005).

4.3 Isotopic composition of soil-emitted N$_2$O

The SP of soil-emitted N$_2$O observed in our study (1 to 17‰) is within the ranges expected for a mixture of the two process groups N$_2$ON and N$_2$OD and does not necessarily indicate a significant contribution of N$_2$O reduction, an effect which is discussed further below. Isotopic composition of soil-emitted N$_2$O has been predominately determined in laboratory incubation studies (Köster et al., 2013a, b; Perez et al., 2006; Well and Flessa, 2009b; Well et al., 2006, 2008). Additionally, results from field experiments using static chambers (Opdyke et al., 2009; Ostrom et al., 2010; Toyoda et al., 2011; Yamulki et al., 2001) and N$_2$O accumulation below a snowpack have been published (Mohn et al., 2013). Based on pure-culture studies, SP values from 19.7 to 40 and -8.7 to 8.5‰, were observed for N$_2$ON and N$_2$OD, respectively (Decock and Six, 2013b). In field experiments SP was found to range between -1 and 32‰ (Opdyke et al., 2009), -3 and 18‰ (Yamulki et al., 2001), -14 and 90‰ (Toyoda et al., 2011) and 0 and 13‰ (Ostrom et al., 2010). The very high SP values detected by Toyoda et al. (2011) may have resulted from extensive N$_2$O reduction to N$_2$, a process increasing SP, $\delta^{15}N_{bulk}$ and δ^{18}O (Ostrom et al., 2007). For $\delta^{15}N_{bulk}$ and δ^{18}O, a much wider variation as compared to SP is expected because these variables depend both on fractionation factors, which vary among different microbial communities and depend on reaction conditions as well as on the isotopic composition of the substrate (Baggs, 2008).

4.4 Changes in N$_2$O source signatures induced by N$_2$O reduction to N$_2$

Quantitative source partitioning between process groups N$_2$ON and N$_2$OD based on SP is possible only when no other processes except those contained in the process groups have an influence on the site-specific N$_2$O isotopic composition. However, in the terminal step of denitrification, namely the reduction of N$_2$O to N$_2$, N–O bonds between lighter isotopes are cleaved preferentially, leading to an increase in SP, $\delta^{15}N_{bulk}$ and δ^{18}O in the remaining N$_2$O. Consequently, part of the N$_2$O originating from a combination of the two process groups, i.e., N$_2$ON and N$_2$OD, may have been consumed by N$_2$O-to-N$_2$ reduction prior to emission.

For the identification of processes determining N$_2$O isotopic composition, isotopecule maps were suggested on which site preference is plotted versus the difference in substrate and product isotopic composition (Koba et al., 2009). The determination of isotopic composition in the substrates is time consuming and additionally confounded in our study by the large and varying footprint area. Therefore, we present a modified isotope map of SP versus $\delta^{15}N_{bulk}$ (Fig. 7, left panel) instead of Δ^{15}N, the δ^{15}N differences between substrate and product (i.e., N$_2$O gas). Rectangles for the process groups N$_2$ON and N$_2$OD are defined by SP values given by Decock and Six (2013b) and by $\delta^{15}N_{bulk}$ values calculated based on process fractionation factors and substrate isotopic composition. For nitrification and denitrification, minimum and maximum fractionation factors of -90 to $-40%$ and...
Figure 7. Left panel: map of SP vs. $\delta^{15}N_{\text{bulk}}$, with rectangles representing process groups N_2O and N_2O_2 based on SP values in Decock and Six (2013b), $\delta^{15}N_{\text{bulk}}$ estimated from minimum and maximum fractionation factors reported in Baggs (2008), and substrate isotopic compositions reported by Bedard-Haughn et al. (2003), Pörl et al. (2007) and Toyoda et al. (2011). Right panel: map of SP vs. $\delta^{18}O$ with traces of management events (Man I in black, Mana II in red, Mana III in green) and the rewetting event (blue). Isotopic compositions are plotted for the transparent blue sections in Fig. 3, including one preceding and one following composition. The preceding composition is represented by the enlarged filled triangle and transparency of the line connecting the composition decreases with event duration.

As stated above, the ratios of fractionation factors for $\delta^{18}O$ and $\delta^{15}N_{\text{bulk}}$ (r_{o-n}) and SP and $\delta^{18}O$ (r_{sp-o}) during N_2O reduction were 2.5 and 0.2 to 0.5 in laboratory incubation experiments (Jinuntuya-Nortman et al., 2008; Ostrom et al., 2007; Well and Flessa, 2009a). In our study, r_{o-n} and r_{sp-o} were 0.5 and 1, respectively, for the whole data set. We also calculated these ratios for a subset of data for which all δ values (SP, $\delta^{15}N_{\text{bulk}}$ and $\delta^{18}O$) increased for 2 consecutive days, indicating that N_2O reduction may have occurred. Such events were observed on eight occasions. If source processes (N_2O, N_2O_N) contributed constantly over 2 consecutive measuring days, changes in the isotopic composition of emitted N_2O were solely attributed to changes in the fraction of N_2O reduction. Under such conditions one would expect that the ratio of the changes in $\delta^{18}O$ and $\delta^{15}N_{\text{bulk}}$ (r_{o-n}) is around 2.5 and that the ratio of the changes in SP and $\delta^{18}O$ (r_{sp-o}) is between 0.2 and 0.5. The mean (median) ratios for r_{o-n} and r_{sp-o} for these selected events were 0.69 (0.44) and 2.1 (1.16), respectively. While the high values of r_{sp-o} indicate that, for instance, changing physical conditions such as soil moisture may play a role in field measurements, the deviation of r_{o-n} from the value of 2.5 could either indicate that the fractionation factor for ^{18}O might be smaller than the one for ^{15}N or that there is no correlation of fractionation factors in natural environments. This is in line with recent findings showing that apparent isotope effects associated with N_2O reduction are sensitive to experimental conditions which influenced diffusive isotope effects (Lewicka-Szczebak et al., 2014, 2015). The same study also showed that fractionation factors during N_2O reduction for ^{15}N and ^{18}O were variable (from −11 to +12‰ and from −18 to +4‰, respectively) and not predictable for field conditions yet. Therefore, to date, the amount of N_2O reduction prior to emission cannot be inferred with sufficient robustness from field measure-
ments alone without the knowledge of the isotopic composition of the substrates.

4.5 Controls on isotopic composition and event-based data aggregation

The high temporal resolution of N$_2$O isotopic and auxiliary measurements allowed us to investigate the controls on N$_2$O isotopic composition over the 3-month campaign period. Correlations with isotopic composition were highest and positive for DOC and soil temperature (Table 2). The significant correlation with temperature for the whole campaign was due to a significant correlation during the dry part of the campaign. If the increase in SP was due to an increased contribution of nitrification, δ^{15}N$_{\text{bulk}}$ should decrease due to the higher isotopic fractionation during this process. The simultaneous increase in SP, δ^{15}N$_{\text{bulk}}$ and δ^{18}O revealed in Fig. 7, however, indicates an increased share of N$_2$O reduction to N$_2$, which might have been triggered by increased substrate availability (DOC) for heterotrophic denitrification. The reported effect of temperature on the N$_2$O : N$_2$ ratio is not entirely certain, but a decrease has been observed with increasing temperature, supporting the hypothesis that N$_2$O reduction increased as temperature rose throughout the measurement period (Saggar et al., 2013).

Though substrate availability has been identified as a major control on N$_2$O source processes (see references in Saggar et al., 2013), correlations between N$_2$O isotopic composition and NO$_3$ and NH$_4$ concentrations were low, except for the correlation with δ^{15}N$_{\text{bulk}}$. The reason might be both the number of measurement points for substrate concentrations being lower compared to other explanatory variables and substrate concentrations not necessarily reflecting process or turnover rates (Wu et al., 2012).

The low explanatory power of all linear regressions underlines that drivers of N$_2$O emissions are highly variable and may even change from event to event. In the absence of management or rewetting events (group BG), isotopic composition covered the whole range of measured values, while management or rewetting events were characterized by lower variability in isotopic composition. Values for SP, δ^{15}N$_{\text{bulk}}$ and δ^{18}O were low for Mana I, rewetting and Mana III, whereas Mana II showed increased SP, δ^{15}N$_{\text{bulk}}$ and δ^{18}O. This indicates that processes must have been different for Mana II, although management was almost identical.

4.6 Short-term variation in isotopic composition

The Keeling plot approach is based on the conservation of mass and assumes that the atmospheric concentration of a gas in the surface layer is a mixture of background atmospheric concentration and a variable amount of gas added by a source, raising the atmospheric concentration above background. The source’s isotope value can be determined, given that its isotope value remains constant during the observation period. In this study, we used noon-to-noon data in the Keeling plots to determine isotope values of soil-derived N$_2$O for the respective noon-to-noon period. Hence, the source processes underlying these N$_2$O emissions have to be constant on this timescale. Currently, little is known about the rate of change of N$_2$O source processes over time steps of minutes to hours. However, changing relative contributions of source processes, which change the isotopic composition in soil-emitted N$_2$O, would be reflected in deviations from a linear relation between inverse concentration and isotopic composition. As the Keeling plots showed no obvious deviations from a linear relation within our measurement precision (see Supplement S1), we conclude (1) that the use of the Keeling plot approach was valid in our study and (2) that changes in N$_2$O source processes in our study site occurred at a time step of 1 day or more. While our data suggest that there are little or no changes in source processes underlying N$_2$O emissions within a noon-to-noon period, clear and distinct day-to-day variation in isotope values of soil-derived N$_2$O, especially in SP, were observed. Such changes were often strong and abrupt following management events (Mana I and III, Rewetting), indicating a significant response of microbial processes to the imposed disturbance. Larger than expected variability in isotope values was observed between management events (class BG) when no obvious variation in environmental drivers occurred. Since noon-to-noon concentration increases were very small during these periods, part of this variability may be attributed to increased uncertainty around the intercept of the Keeling plot. This is also reflected in the relatively large error bars around isotope values on days when overnight N$_2$O concentration increases was low (Fig. 3). Alternatively, the variation in isotopic values associated with small overnight concentration increase may result from other land use or land cover. The EC fluxes are calculated from the turbulent fluctuation of concentration and vertical wind speed (i.e., the covariance of the concentration and wind speed deviations from the half-hourly mean) and therefore account for the modulation of concentration around a short-term (30 min) mean caused by locally emitted N$_2$O. Isotopic composition based on Keeling plots, however, is determined from total N$_2$O accumulated in the nocturnal boundary layer, and, thus, this approach also contains molecules that were emitted outside the flux footprint, which almost exclusively comprised our grassland site (Zeeman et al., 2010), within the larger concentration footprint (Griffis et al., 2007). However, two facts indicate a major influence of the studied grassland on the determined N$_2$O isotopic composition: First, the N$_2$O isotopic composition is very stable for a noon-to-noon period as indicated by a linear relationship between individual measurements (Supplement S1). This relationship persists even though wind speed and direction change and, therefore, individual N$_2$O isotope measurements integrate over a 16-min sampling interval originate from different source areas. Secondly, the CHA grassland can be characterized as a site with vigor-
ous N$_2$O emission, and therefore may dominate the determined N$_2$O isotopic composition, as the influence of a source area increment scales with the source strength. The grassland site was restored in 2012, which led to an extraordinarily high N$_2$O-N emission of 29.1 kg ha$^{-1}$ year$^{-1}$ (Merbold et al., 2014). In the following year 2.5 kg N$_2$O-N ha$^{-1}$ were released. This value is still in the range of maximum emissions reported for a different intensively managed Swiss grassland site, emitting 1.5–2.6 kg N ha$^{-1}$ year$^{-1}$, and at least a factor of 5 greater compared to an extensively managed grassland site with less than 0.5 kg N ha$^{-1}$ year$^{-1}$ (Ammann et al., 2009). With regard to distant land use and land cover, the 2.5 kg N$_2$O-N is also more than double the median (between the 70th and 75th percentile) of all reported values for cultivated temperate sites and is higher than the highest value reported for forests presented in a study containing 1008 N$_2$O emission measurements from agricultural fields (Stehfest and Bouwman, 2006). However, the possibility cannot be excluded that the N$_2$O isotopic signatures analyzed above the grassland site were influenced by adjacent ecosystems.

4.7 Flux-weighted averages of source isotopic compositions

N$_2$O isotopic composition can be used to calculate and further constrain the global N$_2$O budget (Kim and Craig, 1993; Yoshida and Toyoda, 2000). The analysis of emissions from different sources such as agricultural soils or managed grassland based on box models and isotopic composition is complicated by the distinct temporal and spatial variability of isotopic composition (Kim and Craig, 1993; Toyoda et al., 2011; Yoshida and Toyoda, 2000); hence, flux-weighted averages are required to obtain representative values for agricultural N$_2$O (Perez et al., 2001). Our flux-weighted averages of 6.9 ± 4.3, −17.4 ± 6.2 and 27.4 ± 3.6‰ for SP, δ15N$^\text{bulk}$ and δ18O are well within the range of the values of 2.9 to 36.6, −41.5 to −1.9 and 23.2 to 51.7‰ for agricultural soils (Park et al., 2011; Toyoda et al., 2011). The comparison with other grassland soils (Opdyke et al., 2009; Park et al., 2011) indicates that the variability of isotopic composition within a group, such as grassland, may be considerable (for SP: 2.2 to 11.1‰). One has to keep in mind, however, that part of the observed variability may be attributed to the fact that the footprint area of the N$_2$O isotopic composition includes areas with other land use or land cover. Another part of the variability might also be explained by a limited compatibility of different laboratory results, as recently demonstrated in an inter-laboratory comparison campaign (Mohn et al., 2014). The uncertainty in budgets derived by isotopic composition depends on the uncertainty of the representative isotopic composition for a single source, which can be reduced by a quasi-continuous measurement approach, as shown in this study.

5 Conclusions

Our field observations indicate that nitrifier-denitrification and denitrification (process group N$_2$O$_\text{D}$) dominated throughout the measurement period and that variation in isotopic composition was more likely due to variation in the extent of N$_2$O reduction rather than contributions of NH$_2$OH oxidation or fungal denitrification. A high temporal resolution of isotopic composition in soil-emitted N$_2$O showed that, at the beginning of the growing season, medium wfps and low temperature induced low isotope values (representative for process group N$_2$O$_\text{D}$), whereas in the second part of the measurement period, higher temperature and DOC stimulated N$_2$O reduction to N$_2$, although wfps was lower. Management or rewetting events were mostly characterized by low SP, δ15N$^\text{bulk}$ and δ18O, but the event Mana II indicated that processes underlying N$_2$O emissions can vary even under similar management conditions. With this study, a new method is available that can provide real-time data sets for various individual N$_2$O-emitting (eco)systems, such as grassland or agricultural soils, which will help in further constraining the global N$_2$O budget based on box model calculations. However, future campaigns should be accompanied by footprint modeling in order to optimize the inlet height and associated concentration footprint size.

The Supplement related to this article is available online at doi:10.5194/bg-12-2517-2015-supplement.

Acknowledgements. We are grateful to Hans-Ruedi Wettstein and his team for the collaboration with the ETH research station Chamau and Christoph Zellweger for support with the determination of GHG mixing ratios in our target gases. Antoine Roth is acknowledged for his support during the field campaign. This project was funded by the State Secretariat for Education and Research (SER) within COST Action ES0806. The QCLAS used for EC measurements was funded by the R’Equip Project (206021 133763) of the Swiss National Science Foundation. Funding form GHG-Europe (FP7, EU contract no. 244122) and COST Action ES0804–ABBA is gratefully acknowledged. Instrumental developments at Empa were supported by the Swiss National Science Foundation (SNSF). Technical support on the eddy-covariance station has been provided by Thomas Baur and Peter Plüss. The preparation of N$_2$O isotope standards and inter-laboratory comparison measurements were supported by the EMRP ENV52 project “Metrology for high-impact greenhouse gases”. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Edited by: A. Neftel
References

Buchmann, N.: Greenhouse gas budget (CO₂, CH₄ and N₂O) and CH₄ and N₂O isotopic signatures down to 2-m depth, Biochemistry, 111, 695–713, 2012.

Buchmann, N.: Greenhouse gas budget (CO₂, CH₄ and N₂O) and CH₄ and N₂O isotopic signatures down to 2-m depth, Biochemistry, 111, 695–713, 2012.

Buchmann, N.: Greenhouse gas budget (CO₂, CH₄ and N₂O) and CH₄ and N₂O isotopic signatures down to 2-m depth, Biochemistry, 111, 695–713, 2012.

Buchmann, N.: Greenhouse gas budget (CO₂, CH₄ and N₂O) and CH₄ and N₂O isotopic signatures down to 2-m depth, Biochemistry, 111, 695–713, 2012.

B. Wolf et al.: Real-time grassland N_2O isotopic signature

Roth, K.: Bodenkartierung und GIS-basierte Kohlenstoffinventur von Graslandböden, University of Zürich (UZH), 132 pp., 2006.

