Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 12, 2383-2393, 2015
https://doi.org/10.5194/bg-12-2383-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
23 Apr 2015
Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom Phaeodactylum tricornutum
W. Li2,1, K. Gao1, and J. Beardall3 1State Key Laboratory of Marine Environmental Science, Xiamen University (Xiang'an campus), Xiamen, Fujian, 361102, China
2College of Life and Environmental Sciences, Huangshan University, Huangshan, Anhui, 245041, China
3School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
Abstract. It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 μatm; high CO2 – HC) or ambient (390 μatm; low CO2 – LC) levels of CO2 with replete (110 μmol L−1; high nitrate – HN) or reduced (10 μmol L−1; low nitrate – LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (UVR, 280–400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by OA under multiple stressors.

Citation: Li, W., Gao, K., and Beardall, J.: Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom Phaeodactylum tricornutum, Biogeosciences, 12, 2383-2393, https://doi.org/10.5194/bg-12-2383-2015, 2015.
Publications Copernicus
Download
Share