Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 11, 6417-6425, 2014
https://doi.org/10.5194/bg-11-6417-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Technical note
26 Nov 2014
Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States
M. B. Russell1, C. W. Woodall2, A. W. D'Amato1, S. Fraver3, and J. B. Bradford4 1Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
2USDA Forest Service, Northern Research Station, St. Paul, Minnesota, USA
3School of Forest Resources, University of Maine, Orono, Maine, USA
4US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
Abstract. Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.

Citation: Russell, M. B., Woodall, C. W., D'Amato, A. W., Fraver, S., and Bradford, J. B.: Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States, Biogeosciences, 11, 6417-6425, https://doi.org/10.5194/bg-11-6417-2014, 2014.
Publications Copernicus
Download
Short summary
There is great concern about the role that forest ecosystems play in mitigating greenhouse gas emissions under future global-change scenarios. It is assumed that projected climate change will increase the decomposition rate of woody debris, but the magnitude of this increase is unknown. Across eastern US forests, we show that the residence time of downed woody debris may decrease by as much as 13% over the next 200 years, depending on various future climate-change scenarios and forest types.
There is great concern about the role that forest ecosystems play in mitigating greenhouse gas...
Share