Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 11, issue 20 | Copyright

Special issue: Integrated Land Ecosystem-Atmosphere Processes Study (iLEAPS)...

Biogeosciences, 11, 5675-5686, 2014
https://doi.org/10.5194/bg-11-5675-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Oct 2014

Research article | 16 Oct 2014

Soil–atmosphere exchange of ammonia in a non-fertilized grassland: measured emission potentials and inferred fluxes

G. R. Wentworth, J. G. Murphy, P. K. Gregoire, C. A. L. Cheyne, A. G. Tevlin, and R. Hems G. R. Wentworth et al.
  • Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada

Abstract. A 50-day field study was carried out in a semi-natural, non-fertilized grassland in south-western Ontario, Canada during the late summer and early autumn of 2012. The purpose was to explore surface–atmosphere exchange processes of ammonia (NH3) with a focus on bi-directional fluxes between the soil and atmosphere. Measurements of soil pH and ammonium concentration ([NH4+]) yielded the first direct quantification of soil emission potential (Γsoil = [NH4+]/[H+]) for this land type, with values ranging from 35 to 1850 (an average of 290). The soil compensation point, the atmospheric NH3 mixing ratio below which net emission from the soil will occur, exhibited both a seasonal trend and diurnal trend. Higher daytime and August compensation points were attributed to higher soil temperature. Soil–atmosphere fluxes were estimated using NH3 measurements from the Ambient Ion Monitor Ion Chromatograph (AIM-IC) and a simple resistance model. Vegetative effects were ignored due to the short canopy height and significant Γsoil. Inferred fluxes were, on average, 2.6 ± 4.5 ng m−2 s−1 in August (i.e. net emission) and −5.8 ± 3.0 ng m−2 s−1 in September (i.e. net deposition). These results are in good agreement with the only other bi-directional exchange study in a semi-natural, non-fertilized grassland. A Lagrangian dispersion model (Hybrid Single-Particle Lagrangian Integrated Trajectory – HYSPLIT) was used to calculate air parcel back-trajectories throughout the campaign and revealed that NH3 mixing ratios had no directional bias throughout the campaign, unlike the other atmospheric constituents measured. This implies that soil–atmosphere exchange over a non-fertilized grassland can significantly moderate near-surface NH3 concentrations. In addition, we provide indirect evidence that dew and fog evaporation can cause a morning increase of [NH3]g. Implications of our findings on current NH3 bi-directional exchange modelling efforts are also discussed.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share