Articles | Volume 11, issue 8
https://doi.org/10.5194/bg-11-2201-2014
https://doi.org/10.5194/bg-11-2201-2014
Research article
 | 
22 Apr 2014
Research article |  | 22 Apr 2014

Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC

O. Monga, P. Garnier, V. Pot, E. Coucheney, N. Nunan, W. Otten, and C. Chenu

Related authors

Multidecadal persistence of organic matter in soils: multiscale investigations down to the submicron scale
Suzanne Lutfalla, Pierre Barré, Sylvain Bernard, Corentin Le Guillou, Julien Alléon, and Claire Chenu
Biogeosciences, 16, 1401–1410, https://doi.org/10.5194/bg-16-1401-2019,https://doi.org/10.5194/bg-16-1401-2019, 2019
Short summary
A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils
Lauric Cécillon, François Baudin, Claire Chenu, Sabine Houot, Romain Jolivet, Thomas Kätterer, Suzanne Lutfalla, Andy Macdonald, Folkert van Oort, Alain F. Plante, Florence Savignac, Laure N. Soucémarianadin, and Pierre Barré
Biogeosciences, 15, 2835–2849, https://doi.org/10.5194/bg-15-2835-2018,https://doi.org/10.5194/bg-15-2835-2018, 2018
High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches
Rémi Cardinael, Bertrand Guenet, Tiphaine Chevallier, Christian Dupraz, Thomas Cozzi, and Claire Chenu
Biogeosciences, 15, 297–317, https://doi.org/10.5194/bg-15-297-2018,https://doi.org/10.5194/bg-15-297-2018, 2018
Short summary
Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies?
Pierre Barré, Denis A. Angers, Isabelle Basile-Doelsch, Antonio Bispo, Lauric Cécillon, Claire Chenu, Tiphaine Chevallier, Delphine Derrien, Thomas K. Eglin, and Sylvain Pellerin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-395,https://doi.org/10.5194/bg-2017-395, 2017
Manuscript not accepted for further review
Short summary
The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles
B. Guenet, T. Eglin, N. Vasilyeva, P. Peylin, P. Ciais, and C. Chenu
Biogeosciences, 10, 2379–2392, https://doi.org/10.5194/bg-10-2379-2013,https://doi.org/10.5194/bg-10-2379-2013, 2013

Related subject area

Biogeochemistry: Soils
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023,https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023,https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023,https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023,https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023,https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary

Cited articles

Blagodatsky, S. A., Yevdokimov, I. V., Larinova, A. A., and Richter, J.: Microbial growth in soil and nitrogen turnover: model calibration with laboratory data, Soil Biol. Biochem., 30, 1757–1764, 1998.
Chenu, C. and Stotzky, G.: Interactions between microorganisms and soil particles: An overview, in: Interactions between soil particles and microorganisms, edited by: Huang, P. M., Bollag, J. M., and Senesi, N., IUPAC Serie Appl. Geochem., Wiley and Sons, New York, 3–40, 2002.
Coucheney, E.: Impact of bacterial diversity on community response to climatic factors: a microcosms study on microbial respiration and metabolomics, University of Paris 6 (France), 239 pp., 2009.
Dechesne, A., Owsianiak, M., Bazire, A., Grundmann, G. L., Binning, P. J., and Smets, B. F.: Biodegradation in a partially saturated sand matrix: compounding effects of water content, bacterial spatial distribution, and motility, Environ. Sci. Technol., 44, 2386–2392, 2010.
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P.: Soil organic matter turnover is governed by accessibility not recalcitrance, Global Change Biology, 18, 1781–1796, 2012.
Download
Altmetrics
Final-revised paper
Preprint