Articles | Volume 11, issue 8
https://doi.org/10.5194/bg-11-2147-2014
https://doi.org/10.5194/bg-11-2147-2014
Research article
 | 
17 Apr 2014
Research article |  | 17 Apr 2014

Bayesian calibration of a soil organic carbon model using Δ14C measurements of soil organic carbon and heterotrophic respiration as joint constraints

B. Ahrens, M. Reichstein, W. Borken, J. Muhr, S. E. Trumbore, and T. Wutzler

Related authors

Drought counteracts soil warming more strongly in the subsoil than in the topsoil according to a vertical microbial SOC model
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
EGUsphere, https://doi.org/10.5194/egusphere-2024-186,https://doi.org/10.5194/egusphere-2024-186, 2024
Short summary
Optimal enzyme allocation leads to the constrained enzyme hypothesis: The Soil Enzyme Steady Allocation Model (SESAM v3.1)
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1492,https://doi.org/10.5194/egusphere-2023-1492, 2023
Short summary
Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems
Lin Yu, Silvia Caldararu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Biogeosciences, 20, 57–73, https://doi.org/10.5194/bg-20-57-2023,https://doi.org/10.5194/bg-20-57-2023, 2023
Short summary
Apparent ecosystem carbon turnover time: uncertainties and robust features
Naixin Fan, Sujan Koirala, Markus Reichstein, Martin Thurner, Valerio Avitabile, Maurizio Santoro, Bernhard Ahrens, Ulrich Weber, and Nuno Carvalhais
Earth Syst. Sci. Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020,https://doi.org/10.5194/essd-12-2517-2020, 2020
Short summary
Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes
Lin Yu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, and Sönke Zaehle
Geosci. Model Dev., 13, 783–803, https://doi.org/10.5194/gmd-13-783-2020,https://doi.org/10.5194/gmd-13-783-2020, 2020
Short summary

Related subject area

Biogeochemistry: Soils
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024,https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024,https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024,https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Soil priming effects and involved microbial community along salt gradients
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024,https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023,https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary

Cited articles

Andrén, O. and Kätterer, T.: ICBM: The introductory carbon balance model for exploration of soil carbon balances, Ecol. Appl., 7, 1226–1236, 1997.
Baisden, W. T., Amundson, R., Brenner, D. L., Cook, A. C., Kendall, C., and Harden, J. W.: A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence, Global Biogeochem. Cy., 16, 1135, https://doi.org/10.1029/2001GB001823, 2002.
Berg, B.: Litter decomposition and organic matter turnover in northern forest soils, Forest Ecol. Manag., 133, 13–22, 2000.
Berg, B. and Gerstberger, P.: Element Fluxes with litterfall in mature stands of Norway Spruce and European Beech in Bavaria, South Germany, in: Biogeochemistry of forested catchments in a changing environment: a German case study, edited by: Matzner, E., Ecological Studies, 271–277, Springer-Verlag, Berlin, Heidelberg, 2004.
Boltz, S., Debreuve, E., and Barlaud, M.: High-dimensional statistical measure for region-of-interest tracking, IEEE T. Image Process., 18, 1266–1283, 2009.
Download
Altmetrics
Final-revised paper
Preprint