SUPPLEMENT

Natural abundance labelling

The experiment described in the main article is based on a preliminary study, which used natural abundance isotopic variations of δ^{13}CO$_2$ in air (δ^{13}C$_{\text{AIR}}$) to assess the effect of a sudden decrease in air temperature on C transport from above- to belowground in rye-grass.

In the preliminary experiment, the continuous introduction of fresh air into the growth cabinets was suppressed over the entire growing period resulting in a 13C enrichment of cabinet CO$_2$ due to the highly productive plants growing within them, discriminating against 13C. High photosynthetic rates changed cabinet air conditions to c. 100 ppm [CO$_2$] and δ^{13}C$_{\text{air}}$ to c. -1‰ which subsequently also changed δ^{13}C values of respiration. Labelling was achieved by re-starting fresh air supply resulting in near-ambient air conditions inside the cabinets with [CO$_2$] of 400 ppm and δ^{13}C$_{\text{air}}$ of c. -9‰.

Fresh air supply started at the same time as the random allocation of plants to one of two cabinets – one with a warm treatment (25°C; equal to the daytime growing conditions; control) and one with a cold treatment (10°C). However, we found that the δ^{13}C signal of shoot respiration was very sensitive to changes in δ^{13}C$_{\text{AIR}}$, impeding the interpretation of the results. In order to overcome the sensitivity of the δ^{13}C signal of shoot respiration to small changes in δ^{13}C$_{\text{AIR}}$, we followed up on those initial results using a 13C pulse-labelling approach which is described in the main article.

Results

The δ^{13}C of pre-label leaf-respired CO$_2$ was around -11‰ which is much less depleted than usual C$_3$ plant respiration (of around -27‰). Further, δ^{13}C$_{\text{SR}}$ was stable during the diurnal cycle of the pre-label day (data not shown) with only small variations between replicates. However, δ^{13}C$_{\text{SR}}$ was very responsive to the labelling. Immediately after introducing ambient fresh air, shoot respiration was already much more depleted in 13C (change of c. 3.5‰) compared to the average values during pre-labelling (Fig S1, upper panel). Such short-term high sensitivity of δ^{13}C$_{\text{SR}}$ indicates a very fast utilization of recent photo-assimilates for shoot respiration and demonstrates that δ^{13}C$_{\text{SR}}$ is not suitable to assess, for instance, water-use efficiency at the whole-season field scale, as originally proposed by Barbour et al. (2011).
Within about 7 h, δ^{13}C$_{SR}$ had changed by the full magnitude of the treatment (c. 8‰). There was no difference in the response of δ^{13}C$_{SR}$ between warm and cold treatments. However, after 8 h post-labelling, δ^{13}C$_{SR}$ of the warm treatment increased again by c. 3‰, whereas the cold treatment continued to decline, levelling out at 10.5 h post-labelling. The change of δ^{13}C$_{SR}$ by the full magnitude of the label indicates that the pool of recent photo-assimilates in leaves is quickly turned over.

![Figure S1](image)

Figure S1: Time course of relative change of δ^{13}C in shoot (δ^{13}C$_{SR}$; upper panel) and root (δ^{13}C$_{RR}$; lower panel) respired CO$_2$ during continuous label; control treatment (25 ºC, closed symbols); cold treatment (10 ºC; open symbols); sample allocation to warm and cold cabinets and label start (vertical line). The data shown are means ± standard error (n = 3)

The δ^{13}C signal of root respiration (δ^{13}C$_{RR}$) on the other hand, showed a time-lagged response to the label application with a faster response in the warm (after c. 2 h) compared to the cold
treatment (after c. 5 h; Fig S1, lower panel). Unlike $\delta^{13}C_{SR}$, $\delta^{13}C_{RR}$ of both treatments did not change by the full magnitude of the label, shifting only by 5‰.

Dark incubation time

Selection of the dark incubation time was based on diurnal measurements, which showed that $\delta^{13}C_{SR}$ is highly variable after initial placement in the dark, but is stable after 2 h (Fig S2), which was consistent with Barbour et al. (2011)1.

![Figure S2: Rate of change of $\delta^{13}C$ in respiration of shoots and roots ($\delta^{13}C_R$) after harvest. $\delta^{13}C_{SR}$ is highly variable after initial placement in the dark, but is stable after 2 - 2.5 hours. Based on these results, shoot samples were left in the dark for 2 hours, before being incubated (in CO$_2$-free air, also in the dark) for approximately 20 minutes, prior to measurement of $\delta^{13}C_{SR}$. Roots were measured approximately 1 h after harvesting, and showed little variation in $\delta^{13}C_{RR}$ around this time. Note, nearly all values fall within the 1σ standard deviation of the instrument’s target calibration standard (0.12‰).](image)