Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 10, 5793-5816, 2013
https://doi.org/10.5194/bg-10-5793-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
04 Sep 2013
Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean
A. Schmittner1, N. Gruber2, A. C. Mix1, R. M. Key3, A. Tagliabue4, and T. K. Westberry5 1College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
3Department of Geosciences, Princeton University, Princeton, New Jersey, USA
4School of Environmental Sciences, University of Liverpool, Liverpool, UK
5Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
Abstract. Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air–sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air–sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air–sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air–sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC observations and satellite estimates of phytoplankton growth rates and biomass, suggesting that δ13C can also be a useful test of ecosystem models.

Citation: Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K.: Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean, Biogeosciences, 10, 5793-5816, https://doi.org/10.5194/bg-10-5793-2013, 2013.
Publications Copernicus
Download
Share