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Supplement A: Identifying mixed-layer measurements 

 

Derived by wind stress and air-sea heat exchange, the mixed-layer depth (MLD) describes the 

maximum penetration depth of the quasi-homogeneous region of surface water [Kara et al., 

2003]. Typically ranging from 20m in summer months, to 500m during the winter season in 

some parts of the ocean [de Boyer et al., 2004], including MLD measurements is an 

important additional constraint on carbon dynamics that is added from bottle measurements. 

 

Discriminating mixed-layer measurements for each cast was conducted via a bivariant linear 

interpolation from a regular 2° by 2° gridded MLD climatology developed by de Boyer et al.  

[2004]. Their methodology was based on a change in potential density from a 10m reference 

measurement of 0.03 kg m
-3

. Approximately 900,000 CTD profiles including Argo data up to 

September 2008 were used to constrain their MLD climatology. 

 

Supplement B: Identifying coastal data 

 

Carbon biogeochemical dynamics in coastal zones have been shown to be divorced from the 

open ocean system due to terrigenous influences [e.g., Cotrim da Cunha et al., 2007; Gibbs et 

al., 2006; Jickells, 1998; Seitzinger et al., 2005]. Sediment upwelling, anthropogenic 

influences on coastal ecosystems, and nutrient/carbon delivery from rivers have been 

identified as processes perturbing coastal biogeochemical dynamics from the open ocean. To 

mitigate these biases from our oceanic dataset, all casts with a seafloor bathymetry of 500m 

or less were removed from the mixed-layer training dataset. The bathymetric depth for each 

cast was linearly interpolated from NOAA’s 1 arcminute global relief product re-gridded to 

10 arcseconds [Amante and Eakins, 2009]. Eliminating coastal influences reduces the dataset 

by ~9%, but is important when applying the NN approach. 

 

Supplement C: Anthropogenic correction for CT measurements 

 

The Revelle factor (R) quantifies the relationship between the fractional change in oceanic 

pCO2 and CT concentrations in an otherwise static system (Eq. S1), and is therefore a well 

suited empirical means to account for anthropogenic biases in CT measurements. 
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Rearranging equation S1 illustrates how the anthropogenic CT component )( TC  can be 

constrained if in situ CT, pCO2 and R are known, along with the anthropogenic change in 
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Revelle factors and pCO2 concentrations were calculated here via the CO2SYS program 

developed by Pierrot et al. [2006] using bottle measurements of CT, AT, temperature and 

salinity (phosphate and silicate concentrations were also used where available). Selection of 

the Mehrbach et al. [1973] constants as refitted by Dickson and Millero [1987] was based on 

findings by Lee et al. [2000a], McNeil et al. [2007], Millero et al. [2002], and Wanninkhof et 

al. [1999], and maintained consistency with the GLODAP and CARINA products [Key et al., 

2004; Pierrot et al., 2010]. Here, we assume the anthropogenic rate of increase in mixed-layer 

pCO2 is in equilibrium with the atmosphere, which allows us to constrain 2COp  through 

atmospheric CO2 measurements from the Mauna Loa observation site (Dr. Pieter Tans, 

NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends and Dr. Ralph Keeling, Scripps Institute 

of Oceanography scrippsco2.ucsd.edu/). The final empirical equation to correct CT 

measurements to the reference year 2000 is 
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where subscripts sw and atm represent sea-water and atmosphere respectively. 

 

Calculation of Revelle factors and pCO2 concentrations using the CO2SYS program required 

in situ measurements of temperature, salinity, AT and CT. Of the total mixed-layer CT 

measurements, 8,711 (or ~28%) were missing at least one of these additional parameters 

required to constrain the anthropogenic correction using the proposed technique. Rather than 

discarding this data, 22,727 corrected CT measurements were employed to constrain the 

anthropogenic correction using a 4-D linear interpolation in latitude, longitude, in situ 

pressure and the calculated annual anthropogenic rate of CT increase. To evaluate the skill of 

the interpolation approach, we divided the 22,727 measurements into 10 equal subsets and 

independently interpolated the anthropogenic rate of increase. We found the approach 

captured the increase to within 0.08 μmol yr
-1

 (or 8% for the mean value). 
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The global rate of increase in mixed-layer CT concentration was found to be 0.996 μmol kg
-1

 

yr
-1

 (Fig. S2), which is consistent with the 1 μmol kg
-1

 yr
-1

 anthropogenic CT correction rate 

used by Lee et al. [2000b] for measurements between 30°N and 30°S and is also consistent 

with reported rates of increase observed at the HOT [Winn et al., 1998] and BATS [Bates, 

2007] time-series stations. 

 

Two key assumptions underlying this methodology include a constant Revelle factor over the 

correction period, and a global representation of atmospheric CO2 changes from the Mauna 

Loa site. As the ocean absorbs more anthropogenic CO2 the Revelle factor will increase, 

however, recent studies have estimated R to have only slightly changed over the past 2 

centuries [Egleston et al., 2010], which validates our assumption of a constant R value over a 

maximum 20 year correction period. To evaluate the applicability of the Mauna Loa ΔCO2 on 

a global scale, we compared the net change in atmospheric CO2 as observed at the Mauna 

Loa site to a global estimate derived from multiple stations (Thomas Conway and Pieter 

Tans, NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends) (Fig. S1). Here, we find a high 

degree of similarity between the two estimates, and when taking into consideration an 

uncertainty in these estimates of 0.1 μatm yr
-1

, the differences between the two approaches is 

negligible. 

 

Supplement D: Significance of anthropogenic CT correction 

 

To test the significance of anthropogenic CT corrections we applied the systematic 

independent test approach globally (SIT, see Sect. 3) to models trained using data with and 

without anthropogenic CT corrections. The global RSE for the CT model trained using 

measurements without anthropogenic corrections was 13.2 μmol kg
-1

, or ~26% higher than 

the global RSE for the model trained using measurements with anthropogenic corrections 

(10.8 μmol kg
-1

). This difference of 2.4 μmol kg
-1

 between the two approaches signifies the 

low impact of anthropogenic corrections in the models ability to constrain global CT. 

 

To objectively illustrate the importance of this anthropogenic correction we plot the 

difference between non-corrected and corrected CT models RSE values (Eq. S4) for data in 

each year spanning the 30 year measurement period (Fig. S3). 
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where yr spans the global dataset year range (i.e. 1981-2010). 

 

The positive and increasing ΔRSE(yr) as year diverges from the reference year 2000 indicates 

our anthropogenic corrections enhances the global model skills. This result does not advocate 

that applied corrections were globally accurate, it simple confirms the importance of 

correcting CT measurements to better constrain the global CT system.  

 

Supplement E: Supervised SOM 

 

A supervised form of the SOM that additionally incorporates response variable information in 

the clustering phase was first suggested by Kohonen [2001] and later developed by Melssen 

et al., [2006]. In this approach, a second neuron map of identical size to the predictor variable 

map established in Sect. 5.2 (wherein after referred to as the X-map) is constructed for the 

response variable (Y-map).  Initialization of weights for the X-map remain identical to the 

un-supervised form, whilst the Y-map neurons are each randomly assigned a weight from 

within the response variable range. 

 

Identification of the winning neuron in the X-map for data sample  pp y,x  is determined 

using a distance measure that incorporates both the X-map and the Y-map 
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where   10    is responsible for regulating the relative weight of the similarity measures 

of the X and Y maps. By initially setting    to 0.75, more weight is given to the neurons in 

the Y-map in adjusting the X-map. As    reduces linearly with iteration to 0.5, both maps 

are given equal weighting in identifying the winning neuron. Once the winning neuron is 

established, the X-map weighting vectors are updated using the same approach as presented 

in Sect. 5.3. 

 

For every iteration step (τ), each sample is presented to the SOM model twice. In the first 

pass, the winning neuron in the X-map is determined and weighting vectors adjusted, whilst 

the second pass establishes the winning neuron in the Y-map using 
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and subsequently adjusts Y-map weighing numbers. 

 

After the training phase is complete, response variable prediction using the X-map and any 

input data vector )( qx  is conducted in the same manner as presented in Sect. 5.5. 

 

Supplement F: Principal Component Regression 

 

Principal Component Regression (PCR) is an empirical approach when multi-collinearity 

exists between predictor variables. The process (outlined in Fig. S4) first calculates the 

principal components ),,,,( 1 Ii nnn   of the predictor variables ),,,,( 1 Nppp  n . Then 

a least-squares multiple-linear regression is established between a subset of the principal 

components and the response variable (y). The subsets begin with just the first principal 

component, then the first two, through to all principal components. The PCR deemed optimal 

is simply the regression with the lowest residual standard error (RSE).  

 

Supplement G: Evaluating the effectiveness of a bathymetric approach in identifying 

coastal data  

 

To evaluate the appropriateness of identifying coastal data based on a bathymetric depth 

approach, we calculated RSE values for near-coast (within 300 km of a major coastline) and 

open-ocean zones using the global systematic independent test predictions, however, 

excluding the 298 measurements already identified as terrestrially influenced and data above 

70°N (Table S1). The global models ability to capture open-ocean AT measurements was 

found to be ~14% (or 1.5 μmol kg
-1

) better than for near-coast samples, and ~11% for CT. 

This result suggests that identification of coastal measurements under a bathymetric depth 

approach may not be effective for ocean regions where coastal biogeochemical processes and 

terrestrial influences are not coupled to a shelf break, but may rather be dependent on biotic 

distributions. Future attempts to identify coastal measurements should therefore not solely 

rely on bathymetric depth. 

 

Supplement H: Are the neurons capturing the system? 
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Our optimal model configurations may be biased to the three independent datasets that 

constitute only 30% of the global data (see Sect. 6.1.1 Table 4). To ensure the SOM captures 

all important features of the global carbon system, whilst also minimising the potential 

influence of grouping biases, the SIT approach was applied globally using the optimal model 

configurations and with an increase in the SOM neuron size (Table S2). 

 

The independent test RSE values for data below 70°N increased by 0.1 to 0.4 μmol kg
-1

 for 

each step up in neuron map size (Table S2). This suggests that all important features were 

constrained using the three independent datasets, and that the optimal configurations remain 

valid on a global scale. 

 

Supplement I: SOMLO model without Arctic measurements 

 

Uniqueness of parameter concentrations in the Arctic region (above 70°N), in particular that 

of salinity due to intense freshening of the water body, results in classification of Arctic 

measurements into features that are near exclusive to the region (Figure S5). This observation 

suggests Arctic measurements have little influence in constraining the remaining system. 

 

To test this hypothesis, we compared the skill of SOMLO models trained with and without 

Arctic Ocean data using the SIT approach (Table S3). The skill in capturing the global carbon 

systems below 70°N differed by 0.1% and 2% between the two CT and AT models 

respectively, confirming that Arctic data has very little influence in the models ability to 

constrain the global system. This result suggests that no bias exists when comparing the skill 

of the global SOMLO model to the traditional MLR approach that excluded Arctic data in the 

regressions. 

 

Supplement J: Stochastic nature of the SOM 

 

Initialization of neuron weights in the SOM model is a stochastic process (See Sect. 5) and 

can therefore lead to results that are not reproducible. In this study, the influence of this facet 

is dampened due to small neuron to in situ measurement ratios (1:430 for CT), and 800 

training iteration steps converging on similar distributions of measurements among neurons 

for every model under static conditions. 
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As a test to explore stochastic influences in our model, the three independent subsets (see 

Sect. 6.1.1 Table 4) were each predicted 100 times using models trained under optimal 

configurations and the resulting RSE values examined for reproducibility (Table S4). The 

very small 1st standard deviation of 0.2 μmol kg
-1

 (or 1.6%) around the mean RSE value for 

CT demonstrates reproducibility in our SOMLO model and suggests a negligible influence of 

the stochastic SOM initialization. 
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Table S1. Skill comparison between coastal and open-ocean predicted measurements. 

 RSE
a
 (N

b
)  

Model Near-coast Open ocean % difference 

CT 11.9 (4338) 10.6 (18875) 10.9 

AT 10.4 (2856) 8.9 (14014) 14.4 

 

a
 Residual Standard Error (μmol kg

-1
) 

b
 Number of in situ measurements 
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Table S2. RSE values (μmol kg
-1

) for models under optimal configurations and two increases 

in neuron map size. 

 CT model AT model 

 Number of neurons RSE
 

Number of neurons RSE
 

Optimal 64 12.45 25 9.78 

Step 1 72 12.59 30 10.16 

Step 2 81 12.82 36 10.28 
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Table S3. Independent test RSE values for data below 70°N. 

 RSE (μmol kg
-1

)  

 Model with Arctic data Model without Arctic data % difference 

CT 12.45 12.44 0.1% 

AT 9.71 9.9 2% 
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Table S4. RSE results for stochastic initialization test. 

Model 
Mean RSE  

(μmol kg
-1

) 

1
st
 Standard Deviation  

(μmol kg
-1

) 
% of mean  

CT 12.2 0.2 1.6% 

AT 8.2 0.1 1.2% 
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Fig. S1. Global and Mauna Loa site CO2 difference between in situ year and the year 2000. 
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Fig. S2. Correction factor applied to CT measurements defined by 

T(2000)year)situ T(inTcorrection CCC    
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Fig. S3. Annual ΔRSE between CT models trained with and without anthropogenic 

corrections. 
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Fig. S4. Principle Component Regression schematic. 
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Fig. S5. Distribution of measurements assigned to a neuron containing at least one Arctic 

measurement. 

 


