Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic
Volume 10, issue 3
Biogeosciences, 10, 1243–1258, 2013
https://doi.org/10.5194/bg-10-1243-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Boknis Eck Time Series Station (SW Baltic Sea)

Biogeosciences, 10, 1243–1258, 2013
https://doi.org/10.5194/bg-10-1243-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 01 Mar 2013

Research article | 01 Mar 2013

Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

V. J. Bertics1,*, C. R. Löscher2, I. Salonen2, A. W. Dale1, J. Gier1, R. A. Schmitz2, and T. Treude1 V. J. Bertics et al.
  • 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany
  • 2Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
  • *present address: Harvard University, Biological Laboratories, Room 3085, 16 Divinity Avenue, Cambridge, MA 02138, USA

Abstract. Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N) cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB) have the genetic potential to fix molecular N (N2). Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes, such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2 fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from the Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure nitrogenase activity (NA) and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation) activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, the active N-fixing community was examined via molecular tools. Integrated rates of N2 fixation (approximated from NA) and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively) and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42− respectively), and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively). These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm events. Molecular analysis demonstrated the presence of nifH sequences related to two known N2 fixing SRB, namely Desulfovibrio vulgaris and Desulfonema limicola, supporting the hypothesis that some of the nitrogenase activity detected may be attributed to SRB. Overall, our data show that Eckernförde Bay represents a complex ecosystem where numerous environmental variables combine to influence benthic microbial activities involving N and sulfur cycling.

Publications Copernicus
Download
Citation