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Abstract. The direction and magnitude of soil organic car-
bon (SOC) changes in response to climate change depend
on the spatial and vertical distributions of SOC. We esti-
mated spatially resolved SOC stocks from surface to C hori-
zon, distinguishing active-layer and permafrost-layer stocks,
based on geospatial analysis of 472 soil profiles and spa-
tially referenced environmental variables for Alaska. Total
Alaska state-wide SOC stock was estimated to be 77 Pg, with
61 % in the active-layer, 27 % in permafrost, and 12 % in
non-permafrost soils. Prediction accuracy was highest for
the active-layer as demonstrated by highest ratio of per-
formance to deviation (1.5). Large spatial variability was
predicted, with whole-profile, active-layer, and permafrost-
layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2,
and 0–232 kg m−2, respectively. Temperature and soil wet-
ness were found to be primary controllers of whole-profile,
active-layer, and permafrost-layer SOC stocks. Secondary
controllers, in order of importance, were found to be land
cover type, topographic attributes, and bedrock geology. The
observed importance of soil wetness rather than precipita-
tion on SOC stocks implies that the poor representation of
high-latitude soil wetness in Earth system models may lead
to large uncertainty in predicted SOC stocks under future cli-
mate change scenarios. Under strict caveats described in the
text and assuming temperature changes from the A1B Inter-
governmental Panel on Climate Change emissions scenario,
our geospatial model indicates that the equilibrium average
2100 Alaska active-layer depth could deepen by 11 cm, re-
sulting in a thawing of 13 Pg C currently in permafrost. The
equilibrium SOC loss associated with this warming would be
highest under continuous permafrost (31 %), followed by dis-

continuous (28 %), isolated (24.3 %), and sporadic (23.6 %)
permafrost areas. Our high-resolution mapping of soil car-
bon stock reveals the potential vulnerability of high-latitude
soil carbon and can be used as a basis for future studies of
anthropogenic and climatic perturbations.

1 Introduction

Soil organic carbon (SOC) can be a source or sink of atmo-
spheric CO2, with the current balance depending on climate,
disturbance, soil characteristics, and vegetation. Reliable es-
timates of regional SOC stocks and their spatial and tempo-
ral variability are essential to better understand controls of
SOC stocks and their vulnerability to changing climate. Of
particular concern are high-latitude SOC stocks, which are
preserved, in large part, because of low temperatures. High-
latitude regions are expected to experience much higher tem-
perature increases than temperate or tropical regions over the
next century (IPCC, 2007) and therefore are a potentially
vulnerable component of the global carbon cycle (Schuur et
al., 2008; McGuire et al., 2009). Although uncertain, the to-
tal amount of frozen carbon in permafrost soils is estimated
to be double (Schuur et al., 2009; Tarnocai et al., 2009) that
currently in the atmosphere.

Several global SOC stock estimates exist for a variety
of depth intervals (Post et al., 1982; Batjes, 1996; Jobbagy
and Jackson, 2000). However, these global estimates sub-
stantially underestimate permafrost-affected SOC (Ping et
al., 2008a; Tarnocai et al., 2009), mainly because of the
paucity of high-latitude observations. Further, most of these
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studies limited the soil profile observations to the upper 1 m
of soil profile even though high-latitude soils are reported to
contain considerable deep SOC due to cryoturbation (Bock-
heim, 2007). Recent studies have also suggested the need for
more accurate assessment of spatial heterogeneity of SOC
stocks of permafrost-affected soils (Tarnocai et al., 2009;
Johnson et al., 2011). To our knowledge, no regional high-
latitude estimates exist of fine-resolution that shows spatial
variability of SOC stocks in the whole-profile (O to C hori-
zons), active-layer, and permafrost-layer.

Previous estimates of SOC stocks in permafrost-affected
soils have been made by stratifying the study area, aver-
aging point observations of SOC stocks within each stra-
tum, and multiplying by the aerial extent of that stratum
(Ping et al., 2008a; Tarnocai et al., 2009; Bliss and Maurset-
ter, 2010; Johnson et al., 2011). Outside of permafrost ar-
eas, this approach has been reported to be associated with
high estimation errors because it does not represent soil
and environmental variable heterogeneity within each stra-
tum (Thompson and Kolka, 2005; Meersmans et al., 2008;
Sanchez et al., 2009). To address these concerns, McBrat-
ney et al. (2003) proposed a framework to predict the spatial
distribution of SOC using spatially referenced “scorpan” fac-
tors (soil properties, climate, organisms, relief, parent mate-
rial, age, and spatial coordinate). Several subsequent studies
have demonstrated that this approach results in more accu-
rate representation of spatial variability of soil properties and
reduction of prediction errors (Thompson and Kolka, 2005;
Rasmussen, 2006; Meersmans et al., 2008).

Spatially distributed observations of permafrost SOC
stocks are important for development and testing of Earth
system models (ESMs). Several recent modeling studies have
integrated improved representation of high-latitude SOC dy-
namics (e.g., Lawrence et al., 2008; Schaeffer et al., 2011;
Koven et al., 2011), but substantial differences remain be-
tween these ESM estimates and the coarse-resolution ob-
servationally based SOC estimates mentioned above. These
differences occur because of uncertainties associated with
spatially extrapolating limited observations and several lim-
itations with the ESM modeling approaches, including lack
of vertical resolution of SOC stocks, differing environmen-
tal controls of existing SOC stocks, unrealistic spatial rep-
resentation to infer soil variability, and lack of pedogenic
processes typical of high-latitude environments such as cryo-
genic aggregation, podzolization, and cryoturbation. Despite
these limitations, ESMs are often used to predict carbon-
climate feedbacks, although they predict very large ranges
in permafrost SOC losses under future warming scenarios
(25–85 Pg C) depending upon the processes included in the
models (Koven et al., 2011).

Here, we used spatially referenced environmental vari-
ables (topographic attributes, land cover types, climate, and
bedrock geology), and observed SOC pedon description data
in a geographically weighted regression (GWR) approach to
predict the spatial variability of SOC stocks and prediction

accuracy throughout Alaska. Our approach allowed us to sep-
arately estimate active and permafrost-layer SOC stocks at
60 m spatial resolution, and to analyze the spatial variabil-
ity under continuous, discontinuous, sporadic, and isolated
permafrost regions. We also present predicted environmental
controls on SOC stocks, and used them to estimate expected
changes in equilibrium 2100 SOC stocks associated with the
moderate A1B Intergovernmental Panel on Climate Change
(IPCC) emissions scenario (IPCC, 2007).

2 Materials and methods

2.1 SOC profile observations

We used 422 geo-referenced SOC profile data from the Na-
tional Soil Survey Characterization database (NSSL, 2010).
This soil survey database includes measured representative
soil profiles from Alaska and covered all soil types at the
soil suborder level (18 suborders). We included additional
50 soil profile observations from the Arctic regions of North
America (Ping et al., 2008a). Though the SOC profile sam-
ples were unevenly distributed throughout the study area
(Fig. S1), the samples covered all 27 major land resource
areas (MLRAs) of Alaska. The MLRA is a physiographic
unit that contains similar patterns of climate, soils, water re-
sources, and land uses (SCS, 1981). Since our objective was
to estimate the SOC stock across Alaska, we included all the
pedon description data in our study. Unfortunately, the ma-
jority of the pedon description data did not include bulk den-
sity (BD) observations. Therefore, the BD of each soil hori-
zon was estimated using soil texture, depth, and organic mat-
ter content using pedotransfer functions developed by Cal-
houn et al. (2001) and Adams (1973). These functions have
been widely used in literature to predict the soil BD for dif-
ferent soil types (all soil orders) across the globe (Post and
Kwon, 2000; Tan et al., 2004; Minasny et al., 2006, 2011;
Mishra et al., 2009, 2010). Since these relationships provide
a general relationship to predict soil mineral BD from above-
mentioned soil properties and account for the amount of or-
ganic matter contribution in BD, these equations can also be
used to predict the BD of Gelisols. The SOC stock for each
profile was estimated by summing the SOC stock from the
surface to the C horizon:

CT =

n∑
j=1

CjρbDj (1)

where CT = SOC stock (kg m−2) of the whole soil profile,
j = soil horizon number (1, 2, 3,...,n), Cj the SOC concen-
tration (kg kg−1), ρb the soil bulk density corrected for rock
fragments (kg m−3), andDj the thickness of each horizon
(m).

In the soil dataset, the presence of a permafrost layer
was indicated by symbolf (i.e., frozen layer). We used
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the average depth of thef horizon to determine the bound-
ary between permanently frozen and active layers. Table S1
shows the summary statistics of observed SOC stocks of
whole-profile, active, and permafrost layers.

2.2 Environmental datasets

A digital elevation model (DEM) of 60 m spatial resolution
was obtained from the USGS database (Multi-Resolution
Land Characteristics Consortium, 2010). From the DEM we
calculated 13 terrain attributes that are useful to predict the
SOC stock across environmental conditions (using the spatial
analyst function of ArcGIS version 10, Environmental Sys-
tems Research Institute, Inc., Redlands, CA, USA). These
indices include elevation, slope, aspect, curvature (plan, pro-
file, and total), upslope contributing area, flow length, soil
wetness index, sediment transport index, stream power in-
dex, terrain characterization index, and slope aspect index.
From the 13 topographic attributes, 4 attributes were selected
for the model calibration in the best subset regression ap-
proach (Kutner et al., 2004). The included topographic at-
tributes were elevation (meters), specific catchment area (As,
m2 m−1), soil wetness index (SWI), and sediment transport
index (STI). Specific catchment area is the upslope area per
unit width of contour (Wilson and Gallant, 2000). The SWI
indicates the spatial distribution and extent of zones of soil
water saturation and is calculated as the ratio of specific
catchment area to slope gradient (β, degrees) (Wilson and
Gallant, 2000):

SWI =

(
As

tanβ

)
. (2)

The sediment transport index (STI) resembles the slope-
length factor of the Universal Soil Loss Equation and charac-
terizes erosional and depositional areas and potential erosion
risk (Wilson and Gallant, 2000):

STI =

(
As

22.13

)0.6(
sinβ

0.0896

)1.3

. (3)

Land cover data of 60-m spatial resolution were extracted
for Alaska from the NLCD database (Multi-Resolution
Land Characteristics Consortium, 2010). We reclassified the
NLCD land cover types into 9 major categories (Table S2;
Fig. S5). The largest land area was under the scrub category
(43 %), followed by forest (25 %), barren (8.5 %), herba-
ceous (7 %), and wetlands (7 %). The remaining surface area
(9.5 %) was under open water, perennial ice, barren land, and
moss vegetation. Indicator variables for the presence or ab-
sence of 7 land cover types (except open water and perennial
ice) were created and used in the model selection process.

The climate data, such as the long-term (1961–1990) mean
annual air temperature and mean annual precipitation, were
obtained from the PRISM database of spatial climate analy-
sis service of the Oregon State University (Daly et al., 2001).

The bedrock geology data were obtained from a USGS
database (Beikman, 1980). Across Alaska there were 180
types of bedrock. The largest land area was under Quaternary
deposits (8 %), followed by Cretaceous rocks (7.3 %), Lower
Paleozoic rocks (6.6 %), Lower Cretaceous rocks (6.2 %), ice
(4.3 %), and Pleistocene deposits (4.2 %). The remaining sur-
face area was under the remaining 174 bedrock types.

2.3 Spatial modeling and accuracy of prediction

We used a GWR approach (Fotheringham et al., 2002;
Mishra et al., 2010; Zhang et al., 2011) and geospatial anal-
ysis to predict Alaska SOC stocks. First, the best subset re-
gression was used to identify the environmental variables us-
ing a Mallows’Cp criterion (Kutner et al., 2004). The model
was tested for multicollinearity of selected independent vari-
ables, unequal error variance, normality, and randomness of
the residuals. In this analysis, all the data points contributed
to the estimates of model parameters equally using a least
square solution. SAS statistical software (SAS, 2004) was
used for model selection. The selected independent vari-
ables were then used in a GWR approach to derive the spa-
tially varying model parameters at a 1000 m regular interval
throughout the study area. In GWR, the weight function was
chosen as an adaptive spatial kernel type so that the spatial
extent for included samples varied based on sample density.
The bandwidth was chosen based on Akaike information cri-
terion minimization (Fotheringham et al., 2002). The GWR
procedure can be represented as

∧

SOC
i

=
∧

β
0
(ui,vi) +

∧

β
1
(ui,vi)Xi1 +

∧

β
2
(ui,vi)Xi2 (4)

+
∧

β
k

(ui,vi)Xik

where
∧

SOC
i

is the predicted SOC stock at locationi; (ui,vi)

are the coordinates for locationi; k is the number of environ-

mental variables;
∧

β
0
−

∧

β
k

are regression coefficients; andXi1

toXik are environmental variables at locationi (Table S3 and
S4).

We evaluated the prediction accuracy of the resulting SOC
stock maps by using aK-fold validation approach (Mishra
et al., 2010; Martin et al., 2011). In this approach, the entire
dataset was randomly divided into calibration (n = 412) and
validation (n = 60) datasets five times. Mapping of SOC us-
ing calibration datasets and their validation were conducted
for each split, and the average validation indices are reported
here. From the predicted SOC maps, SOC stock values were
extracted for the validation points. The obtained values of
observed and predicted C pool were interpreted by calculat-
ing different validation indices, such as the mean estimation
error (MEE) and root-mean-square error (RMSE):

MEE =
1

n

n∑
i=1

(Cs(xi) − Cs(xi)) (5)
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RMSE=

√∑
i=1

(Cs(xi) − Cs(xi))2 (6)

where Cs(xi) is the measured SOC stock, Cs(xi) the esti-
mated SOC stock, andn the number of validated observa-
tions. These values should approach zero for an optimal pre-
diction. We also calculated the ratio of performance to devi-
ation (RPD; defined as the ratio between the standard devi-
ation and the RMSE), which indicates the overall prediction
ability of the selected approach.

Environmental controls on SOC stocks were examined by
converting temperature, precipitation, and elevation data into
zones and then calculating the SOC stocks of active-layer,
permafrost-layer, and whole-profile layers in each zone. Sim-
ilar calculations were performed for land cover type impacts
on SOC stocks. The impact of future warming on SOC stocks
was evaluated using anticipated temperature changes under
the moderate emission scenario (A1B) of IPCC. The down-
scaled future temperature change projections for Alaska were
obtained from the Scenarios Network for Alaska Planning
(SNAP, 2011). This dataset provides five model composite
values (IPCC predictions: selected on the basis of small-
est systematic errors) at a 2 km grid across Alaska. The
dataset used to delineate continuous, discontinuous, isolated
permafrost types was obtained from the permafrost map of
Alaska (Ferrians, 1998).

3 Results and discussion

3.1 Spatial and vertical distribution of soil organic
carbon stocks

In this section we discuss the predicted distribution of SOC
stocks; estimates of the controls on SOC stocks are dis-
cussed in the following section. Predicted whole-profile SOC
stocks had high spatial variability (coefficient of variabil-
ity, CV = 49 %), ranging from 1 to 296 kg m−2 with an av-
erage across Alaska of 53.6 kg m−2 (Fig. 1a). The north-
ern and western regions of Alaska had the highest predicted
levels of whole-profile SOC (> 75 kg m−2) (Fig. 1a). The
eastern and southern regions had the lowest whole-profile
SOC stocks (< 50 kg m−2). The average prediction error for
whole-profile SOC stock was 26.3 kg m−2, and the observed
ratio of performance to deviation (RPD) was 1.4, indicating
our approach has a moderate predictive ability for whole-
profile SOC stocks (Gomez et al., 2008). The predicted aver-
age Alaska active-layer SOC stock was 35.4 kg m−2, ranging
from 2 to 166 kg m−2 (Fig. 1b). Active-layer SOC stocks also
had high spatial variability (CV = 59 %). The average error of
prediction for active-layer SOC stock was 17.8 kg m−2, and
the RPD was 1.5. Predicted permafrost SOC stock ranged
from 0 to 232 kg m−2 with a spatial average of 21.3 kg m−2

and the highest spatial variability (CV = 108 %) (Fig. 1c).
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Fig. 1.Predicted soil organic carbon stocks in(a) whole-profile,(b)
active-layer, and(c) permafrost layers in Alaska.

The observed average error of prediction was 36.6 kg m−2,
and the RPD was 0.93 (Table 1). Our results suggest, on aver-
age across the state, a larger proportion of soil organic carbon
is stored in the active-layer than in the permafrost layer of the
permafrost-affected soils. Whole-profile SOC stocks across
Alaska, excluding underneath water and glaciers, were es-
timated to be 77 Pg, of which 47 Pg are in the active layer,
21 Pg in the permafrost layer, and 9 Pg in perennially un-
frozen areas. Of the 21 Pg permafrost SOC stock, 14, 5, 1,
and 1 Pg are under continuous, discontinuous, sporadic, and
isolated permafrost areas, respectively (Table 2).
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Table 1.Prediction accuracy of soil organic carbon stocks of differ-
ent depth intervals. MEE is mean estimation error; RMSE is root-
mean-square error; RPD is ratio of performance to deviation.

Soil organic carbon Validation errors
stocks (kg m−2) MEE (kg m−2) RMSE (kg m−2) RPD

Whole profile −5.7 26.3 1.4
Active layer 3.2 17.8 1.5
Permafrost 11.2 37.6 0.9

Our estimates of Alaska whole-profile SOC stocks are
higher than previously published studies (Ping et al., 2008a;
Tarnocai et al., 2009; Bliss and Maursetter, 2010; Johnson et
al., 2011). Several factors contributed to the differences with
these previous studies: we included more observations; our
estimates were not limited to a relatively shallow depth inter-
val; and we used a geospatial prediction approach that incor-
porates variability of environmental factors in predicted SOC
stocks (McBratney et al., 2003; Thompson and Kolka, 2005;
Meersmans et al., 2008; Sanchez et al., 2009). For compar-
ison, Ping et al. (2008a) used 117 1-m deep samples from
northern Alaska (north of 60◦ N) and reported average SOC
stocks to be 34.8 kg m−2, 21.7 kg m−2, and 13.1 kg m−2 for
1 m depth, active, and permafrost layers, respectively (com-
pared to our estimates which were 1.8, 1.5, and 2.3 times
as large, respectively, for the same region). Though Ping et
al. (2008a) were the first to report SOC stocks in different
depth intervals from Arctic soils, they did not provide in-
formation about whole soil profile SOC stocks (down to C
horizon). Tarnocai et al. (2009) used 131 observations from
Alaskan soils and reported 18 Pg of SOC stock to 3 m depth.
However, this study did not differentiate the SOC stocks into
active and permafrost layers and assigned no SOC to the non-
permafrost-affected soils of Alaska (322 629 km2) where we
predicted a range of 0–20 kg m−2 SOC. Bliss and Maurset-
ter (2010) used 523 pedon data and STATSGO polygons
(NRCS, 1994) to estimate the SOC stock of Alaska to be
48 Pg (our estimate was 1.6 times as large). Finally, John-
son et al. (2011) stratified the state of Alaska into different
ecoregions and reported area weighted average SOC stocks
to 1 m depth of 45.7 kg m−2, 16.3 kg m−2, 22 kg m−2, and
24.6 kg m−2 for Arctic tundra, intermontane boreal, Alaska
range transition, and coastal rainforests, respectively (our es-
timates were 1.5, 3, 1.6, and 1.6 times as large when study
area was stratified using the same ecoregions). For Arctic
tundra, intermontane boreal, Alaska range transition, and
coastal rainforests, the predicted coefficient of variability in
whole profile SOC stock was 49 %, 38 %, 43 %, and 34 %, re-
spectively. In the active layer SOC stock, the CV was 51 %,
33 %, 82 %, and 221 %. In permafrost SOC stock, the ob-
served CV was 78 %, 145 %, 111 %, and 140 %, respectively.
Although these studies grouped regions differently and cov-
ered different areas of Alaska, our SOC stock estimates were

between 1.3 and 3 times as large when comparable groupings
were considered.

For comparison with whole-profile and permafrost-layer
SOC stocks, we attribute differences between our results and
these previous studies to the relatively deeper profiles we
considered. Of the 472 SOC profiles we examined, 339 were
non-permafrost-affected profiles; of these, 180 (53 %) were
deeper than 1 m. Of the remaining 133 permafrost-affected
profiles, 76 (57 %) and 8 (6 %) were deeper than 1 and 3 m
(up to 4.5 m), respectively. Of the total samples, 126 sam-
ples were deeper than 1.5 m, of which 45 were in permafrost-
affected soils. Because including these deeper profiles in our
estimate led to substantially higher predicted whole-profile
and permafrost-layer SOC stocks, we believe that these pre-
vious studies underestimated these portions of Alaskan SOC
stocks. For active-layer SOC stocks, we attribute our∼ 1.5
times larger predictions to our geospatial non-stationary pre-
diction approach, which considers the impact of the spatial
heterogeneity of SOC controllers in contrast with these pre-
vious studies.

3.2 Controls on soil organic carbon stocks

We found that whole-profile, active-layer, and permafrost
SOC stocks decreased with increased elevation (Fig. 2), and
most SOC stocks (70 %) were located in areas with eleva-
tion below 400 m. Low elevation areas throughout Alaska are
associated with lower slope gradients and higher soil wet-
ness, both of which were predictors of higher SOC stocks.
This result is consistent with observations made by Ping et
al. (2008a) who reported higher total SOC stocks in low ele-
vation areas of Alaska north of 60◦ N.

Annual average temperature was strongly related to active-
layer and permafrost-layer SOC stocks: As the 30-yr an-
nual average air temperature increased from−18 to 0◦C,
active-layer SOC stock increased and permafrost-layer SOC
stock decreased. Between 0 and 4◦C, the increase in pre-
dicted permafrost-layer SOC stock was due to inclusion of
sporadic (14 % of Alaska surface area) and isolated (85 % of
Alaska surface area) permafrost areas located in this temper-
ature range. Both the active-layer and permafrost-layer SOC
stocks decreased in the 4 to 6◦C range. Whole-profile SOC
stocks decreased with increased annual average temperature
(Fig. S2). Our predicted control of temperature on the spa-
tial distribution of whole-profile SOC stocks across Alaska
is similar to the findings of other studies that reported neg-
ative relationships of air temperature to SOC stocks (Ping
et al., 2008a; Johnson et al., 2011). The common explanation
for this negative dependence is cryoturbation, i.e., subduction
of surface SOC into the soil matrix due to seasonal freeze and
thaw, and protection of this SOC from mineralization and
decomposition due to freezing temperatures (Michaelson et
al., 1996; Ping et al., 2008b).

Predicted whole-profile SOC stock decreased with in-
creased precipitation up to 800 mm per year and then
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Fig. 2. Average whole-profile, active-layer, and permafrost SOC
stocks in each elevation zone of Alaska. Error bar is the standard
deviation andn is the number of observations.

remained constant (Fig. S3). However, no trend was observed
for active-layer and permafrost SOC stocks with precipita-
tion. Our findings are consistent with observations reported
by Guo et al. (2006) in the conterminous US, who also re-
ported no consistent relationships with increasing precipita-
tion. Since the dominant proximal hydrological control on
SOC decomposition in upland systems is soil moisture and
not directly precipitation, we used topographic wetness index
as a soil moisture proxy in our spatial extrapolation approach.
Predicted whole-profile and active-layer SOC stocks were
strongly related to this index (Fig. S4). We believe that the
observed importance of soil wetness rather than precipitation
on SOC stocks implies that the poor representation of high-
latitude soil wetness in Earth system models (Lawrence and
Slater, 2005; Schaefer et al., 2011) may lead to large uncer-
tainty in predicted SOC stocks under future climate change
scenarios.

Among different land cover types, herbaceous vegetation
had the highest Alaska-average whole-profile, active-layer,
and permafrost SOC stocks (Fig. 3). After herbaceous vege-
tation, scrub and wetlands had the highest whole-profile SOC
stocks. Barren land had the lowest predicted whole-profile,
permafrost-layer, and active-layer SOC stocks in Alaska.
These low stocks are likely due to low vegetation cover
(< 15 %), and therefore low productivity, and high-elevation
and high-slope positions, and therefore high erosional losses.

3.3 Impact of possible temperature changes on
equilibrium Alaska carbon stocks

Using the relationships we derived from the 472 pedons and
controlling environmental variables described above, we es-
timated the equilibrium impact of anticipated temperature
changes on SOC stocks and active layer thickness for the
IPCC A1B 2100 climate. We note several important assump-
tions to this equilibrium SOC stock estimate: (1) current SOC
stocks are related to the 30-yr average climate and current
vegetation and soil distributions used to develop the spa-

Table 2.Soil organic carbon stocks in different depth intervals and
permafrost zones across Alaska (NA = not applicable).

Permafrost Whole Profile Active Layer Permafrost Layer
Category (Pg) (Pg) (Pg)

Continuous 32 18 14
Discontinuous 22 17 5
Sporadic 7 6 1
Isolated 7 6 1
Unfrozen areas 9 NA NA
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Fig. 3.Predicted average whole-profile, active-layer, and permafrost
SOC stocks under different land covers in Alaska. Error bar is the
standard deviation andn is the number of observations.

tial extrapolation of individual pedons to all of Alaska as
described above; (2) the estimated changes in SOC stocks
reflect a new equilibrium state consistent with the new at-
mospheric temperature (i.e., SOC stocks have enough time
to re-equilibrate with the new imposed climate, a process
that can take many centuries); and (3) that interaction terms
(e.g., between temperature, precipitation, vegetation distri-
bution, and gross and net primary production) are neglected.
Since none of these assumptions are likely to be fully re-
alized, we consider the resulting estimates to be relatively
uncertain. We note, however, that other methods used to pre-
dict changes in high-latitude SOC stocks under a changing
climate, such as land-surface models integrated in global
circulation models (Lawrence and Slater, 2010; Schaefer
et al., 2011; Riley et al., 2011; Koven et al., 2011), come
with their own equally restrictive, and occasionally acknowl-
edged, assumptions. With these caveats in mind, and assum-
ing an A1B IPCC temperature scenario at 2100, we estimated
that the equilibrium Alaska-average active-layer thickness
could deepen by 11 cm, thawing∼ 13 Pg of permafrost SOC
with an associated 27 % loss of permafrost area throughout
Alaska. The corresponding whole-profile permafrost SOC
loss was estimated to be 31, 28, 24, and 24 % from continu-
ous, discontinuous, isolated, and sporadic permafrost areas,
respectively.

Modeling studies of permafrost loss and active layer thick-
ness increases either for Alaska or for the Northern Hemi-
sphere under the same emissions scenario (A1B) varied
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widely. For Northern Hemisphere permafrost area, Saito
et al. (2007), Lawrence and Slater (2010), Lawrence et
al. (2008), and Schaefer et al. (2011) predicted 40–57 %, 73–
88 %, 80–85 %, and 20–39 % reductions, respectively. For
Alaska, Marchenko et al. (2008) and Schaefer et al. (2011)
predicted 7 % and 22–61 % permafrost area reduction, re-
spectively. The projected range of increases in active-layer
depth from these studies is also broad, ranging from 50–
300 cm. The large differences between these previous model
projections are likely due to differences in model process
representation, whether they included specific mechanisms
(e.g., fire), climate forcing (e.g., snow and precipitation in-
puts, air temperatures), and the strength of land-atmosphere
feedbacks. Direct comparisons with our results are compli-
cated because these studies analyzed a larger region and at-
tempted to include other factors that can impact permafrost
SOC stocks, e.g., changes in hydrology, fire, growing season
length, and others. Unfortunately, none of these numerical
modeling studies reported results for simulations that can be
directly compared to our estimates, which attempted to ac-
count for only the effects of changing temperature. Never-
theless, our predicted loss of permafrost area is at the lower
end of the range of these studies, and our predicted increase
in average active-layer thickness is lower than these previous
estimates.

3.4 Limitations of predicted SOC stocks

Our prediction accuracy of current SOC stocks was con-
strained by the limited number of available SOC profile ob-
servations, their uneven distribution across Alaska, and vari-
ations in the time of observation (most of the samples were
taken between 1975 and 1990). The current sample density
of 1 sample per 2587 km2 area and their uneven distribution
across Alaska is not sufficient to fully characterize SOC de-
pendence on climate, edaphic factors, and land cover types.
We believe that the SOC stock estimate will change, and
probably increase, from our estimates if more samples are
used, particularly from yedoma (loess deposits), and deltaic
(alluvial deposits) soils that are several meters deep and store
a huge amount of SOC. Likewise, we were not able to ap-
ply all relevant soil forming factors (environmental variables)
since spatially resolved observations of, for example, fire fre-
quency, fire intensity, and time of soil formation do not ex-
ist for much of Alaska. Future work should address the role
these other factors have on high-latitude SOC stocks.

4 Conclusions

Our geospatial analysis using SOC profile observations and
potential environmental and ecosystem controllers led to
higher predicted Alaska SOC stocks than previously re-
ported. We attribute the increase to our inclusion of deeper
SOC profile observations, spatially heterogeneous environ-

mental parameters, and non-stationary spatial modeling ap-
proach. Temperature and soil wetness were primary con-
trollers on whole-profile, active-layer, and permafrost-layer
SOC stocks. Secondary controllers, in order of importance,
were land cover type, topographic attributes, and bedrock ge-
ology. The large spatial heterogeneity of these factors across
Alaska led to very large predicted spatial variability in SOC
stocks. We also estimated, with important caveats, poten-
tial equilibrium SOC losses associated with a moderate tem-
perature change scenario (A1B). Our estimates of potential
permafrost area loss and active-layer thickening were at the
lower end of, and below, respectively, previously reported
values from Earth system modeling analyses. Because of the
caveats discussed above regarding the use of current obser-
vations to infer future conditions, analyses with mechanistic
land-surface models are the only practical approach to accu-
rately estimating future SOC stocks. However, since no cur-
rent ESM accurately reproduces high-latitude SOC stocks,
spatially distributed datasets based on observations, such as
those reported here, are an important step toward improving
and testing these models.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
3637/2012/bg-9-3637-2012-supplement.pdf.
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