Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 9, 2177-2193, 2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
18 Jun 2012
Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures
C. J. Friedline1, R. B. Franklin2, S. L. McCallister2,3, and M. C. Rivera1,2 1Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
2Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
3Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA, USA
Abstract. Microbial communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study is to investigate the composition of bacterial assemblages in three different water layer habitats: surface (2–20 m), deep chlorophyll maximum (DCM; 28–90 m), and deep (100–4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. The sampling of three discrete, predefined habitat types from different depths, Longhurstian provinces, and geographical locations allowed us to investigate whether marine bacterial assemblages show spatial variation and to determine if the observed spatial variation is influenced by current environmental conditions, historical/geographical contingencies, or both. The PCR amplicons of the V6 region of the 16S rRNA from 16 microbial assemblages were pyrosequenced, generating a total of 352 029 sequences; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized operational taxonomic units (OTU) using a definition of 97% sequence identity. Community ecology statistical analyses demonstrate that the eastern Atlantic Ocean bacterial assemblages are vertically stratified and associated with water layers characterized by unique environmental signals (e.g., temperature, salinity, and nutrients). Genetic compositions of bacterial assemblages from the same water layer are more similar to each other than to assemblages from different water layers. The observed clustering of samples by water layer allows us to conclude that contemporary environments are influencing the observed biogeographic patterns. Moreover, the implementation of a novel Bayesian inference approach that allows a more efficient and explicit use of all the OTU abundance data shows a distance effect suggesting the influence of historical contingencies on the composition of bacterial assemblages. Surface bacterial communities displayed a general congruency with the ecological provinces as defined by Longhurst with modest exceptions usually associated with unique hydrographic and biogeochemical features. Collectively, our findings suggest that vertical (habitat) and latitudinal (distance) biogeographic signatures are present and that both environmental parameters and ecological provinces drive the composition of bacterial assemblages in the eastern Atlantic Ocean.

Citation: Friedline, C. J., Franklin, R. B., McCallister, S. L., and Rivera, M. C.: Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures, Biogeosciences, 9, 2177-2193, doi:10.5194/bg-9-2177-2012, 2012.
Publications Copernicus