Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 7, 585-619, 2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
12 Feb 2010
Dynamics and distribution of natural and human-caused hypoxia
N. N. Rabalais1, R. J. Díaz2, L. A. Levin3, R. E. Turner4, D. Gilbert5, and J. Zhang6 1Louisiana Universities Marine Consortium, Chauvin, Louisiana 70344, USA
2Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA
3Integrative Oceanography Division, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0218, USA
4Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
5Institut Maurice-Lamontagne, Pêches et Océans Canada, 850 route de la mer, Mont-Joli, Québec, G5H 3Z4, Canada
6State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan Road North, Shanghai 200062, China
Abstract. Water masses can become undersaturated with oxygen when natural processes alone or in combination with anthropogenic processes produce enough organic carbon that is aerobically decomposed faster than the rate of oxygen re-aeration. The dominant natural processes usually involved are photosynthetic carbon production and microbial respiration. The re-supply rate is indirectly related to its isolation from the surface layer. Hypoxic water masses (<2 mg L−1, or approximately 30% saturation) can form, therefore, under "natural" conditions, and are more likely to occur in marine systems when the water residence time is extended, water exchange and ventilation are minimal, stratification occurs, and where carbon production and export to the bottom layer are relatively high. Hypoxia has occurred through geological time and naturally occurs in oxygen minimum zones, deep basins, eastern boundary upwelling systems, and fjords.

Hypoxia development and continuation in many areas of the world's coastal ocean is accelerated by human activities, especially where nutrient loading increased in the Anthropocene. This higher loading set in motion a cascading set of events related to eutrophication. The formation of hypoxic areas has been exacerbated by any combination of interactions that increase primary production and accumulation of organic carbon leading to increased respiratory demand for oxygen below a seasonal or permanent pycnocline. Nutrient loading is likely to increase further as population growth and resource intensification rises, especially with increased dependency on crops using fertilizers, burning of fossil fuels, urbanization, and waste water generation. It is likely that the occurrence and persistence of hypoxia will be even more widespread and have more impacts than presently observed.

Global climate change will further complicate the causative factors in both natural and human-caused hypoxia. The likelihood of strengthened stratification alone, from increased surface water temperature as the global climate warms, is sufficient to worsen hypoxia where it currently exists and facilitate its formation in additional waters. Increased precipitation that increases freshwater discharge and flux of nutrients will result in increased primary production in the receiving waters up to a point. The interplay of increased nutrients and stratification where they occur will aggravate and accelerate hypoxia. Changes in wind fields may expand oxygen minimum zones onto more continental shelf areas. On the other hand, not all regions will experience increased precipitation, some oceanic water temperatures may decrease as currents shift, and frequency and severity of tropical storms may increase and temporarily disrupt hypoxia more often.

The consequences of global warming and climate change are effectively uncontrollable at least in the near term. On the other hand, the consequences of eutrophication-induced hypoxia can be reversed if long-term, broad-scale, and persistent efforts to reduce substantial nutrient loads are developed and implemented. In the face of globally expanding hypoxia, there is a need for water and resource managers to act now to reduce nutrient loads to maintain, at least, the current status.

Citation: Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia, Biogeosciences, 7, 585-619, doi:10.5194/bg-7-585-2010, 2010.
Publications Copernicus
Special issue