Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 6, 2313-2331, 2009
http://www.biogeosciences.net/6/2313/2009/
doi:10.5194/bg-6-2313-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
30 Oct 2009
Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?
F. Melzner1, M. A. Gutowska2, M. Langenbuch1, S. Dupont3, M. Lucassen4, M. C. Thorndyke5, M. Bleich2, and H.-O. Pörtner4 1Biological Oceanography, Leibniz-Institute of Marine Sciences (IFM-GEOMAR), Kiel, Germany
2Institute of Physiology, Christian-Albrechts-University, Kiel, Germany
3Department of Marine Ecology, Göteborg University, The Sven Lovén Centre for Marine Sciences, Kristineberg, Sweden
4Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
5Royal Swedish Academy of Sciences, The Sven Lovén Centre for Marine Sciences, Kristineberg, Sweden
Abstract. Future ocean acidification has the potential to adversely affect many marine organisms. A growing body of evidence suggests that many species could suffer from reduced fertilization success, decreases in larval- and adult growth rates, reduced calcification rates, and even mortality when being exposed to near-future levels (year 2100 scenarios) of ocean acidification. Little research focus is currently placed on those organisms/taxa that might be less vulnerable to the anticipated changes in ocean chemistry; this is unfortunate, as the comparison of more vulnerable to more tolerant physiotypes could provide us with those physiological traits that are crucial for ecological success in a future ocean. Here, we attempt to summarize some ontogenetic and lifestyle traits that lead to an increased tolerance towards high environmental pCO2. In general, marine ectothermic metazoans with an extensive extracellular fluid volume may be less vulnerable to future acidification as their cells are already exposed to much higher pCO2 values (0.1 to 0.4 kPa, ca. 1000 to 3900 μatm) than those of unicellular organisms and gametes, for which the ocean (0.04 kPa, ca. 400 μatm) is the extracellular space. A doubling in environmental pCO2 therefore only represents a 10% change in extracellular pCO2 in some marine teleosts. High extracellular pCO2 values are to some degree related to high metabolic rates, as diffusion gradients need to be high in order to excrete an amount of CO2 that is directly proportional to the amount of O2 consumed. In active metazoans, such as teleost fish, cephalopods and many brachyuran crustaceans, exercise induced increases in metabolic rate require an efficient ion-regulatory machinery for CO2 excretion and acid-base regulation, especially when anaerobic metabolism is involved and metabolic protons leak into the extracellular space. These ion-transport systems, which are located in highly developed gill epithelia, form the basis for efficient compensation of pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (>0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, gametes, zygotes and early embryonic stages, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success – even of the more tolerant taxa.

Our current understanding of which marine animal taxa will be affected adversely in their physiological and ecological fitness by projected scenarios of anthropogenic ocean acidification is quite incomplete. While a growing amount of empirical evidence from CO2 perturbation experiments suggests that several taxa might react quite sensitively to ocean acidification, others seem to be surprisingly tolerant. However, there is little mechanistic understanding on what physiological traits are responsible for the observed differential sensitivities (see reviews of Seibel and Walsh, 2003; Pörtner et al., 2004; Fabry et al., 2008; Pörtner, 2008). This leads us to the first very basic question of how to define general CO2 tolerance on the species level.


Citation: Melzner, F., Gutowska, M. A., Langenbuch, M., Dupont, S., Lucassen, M., Thorndyke, M. C., Bleich, M., and Pörtner, H.-O.: Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?, Biogeosciences, 6, 2313-2331, doi:10.5194/bg-6-2313-2009, 2009.
Publications Copernicus
Download
Share