Journal Metrics

  • IF value: 3.753 IF 3.753
  • IF 5-year<br/> value: 4.644 IF 5-year
    4.644
  • SNIP value: 1.376 SNIP 1.376
  • IPP value: 4.067 IPP 4.067
  • SJR value: 2.451 SJR 2.451
  • h5-index value: 57 h5-index 57
Biogeosciences, 5, 1601-1613, 2008
www.biogeosciences.net/5/1601/2008/
doi:10.5194/bg-5-1601-2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction
M. R. Raupach1, J. G. Canadell1, and C. Le Quéré2,3
1Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, Australia
2School of Environmental Sciences, University of East Anglia, Norwich, UK
3British Antarctic Survey, Cambridge, UK

Abstract. We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959–2006, at a proportional growth rate 0.24% y−1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. To assess the combined roles of the biophysical and anthropogenic drivers of atmospheric CO2 growth, the increase in the CO2 growth rate (1.9% y−1 over 1959–2006) is expressed as the sum of the growth rates of four global driving factors: population (contributing +1.7% y−1); per capita income (+1.8% y−1); the total carbon intensity of the global economy (−1.7% y−1); and airborne fraction (averaging +0.2% y−1 with strong interannual variability). The first three of these factors, the anthropogenic drivers, have therefore dominated the last, biophysical driver as contributors to accelerating CO2 growth. Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant further acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse.

Citation: Raupach, M. R., Canadell, J. G., and Le Quéré, C.: Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction, Biogeosciences, 5, 1601-1613, doi:10.5194/bg-5-1601-2008, 2008.
 
Search BG
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share