Articles | Volume 13, issue 17
https://doi.org/10.5194/bg-13-5065-2016
https://doi.org/10.5194/bg-13-5065-2016
Research article
 | Highlight paper
 | 
13 Sep 2016
Research article | Highlight paper |  | 13 Sep 2016

Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

Adrienne J. Sutton, Christopher L. Sabine, Richard A. Feely, Wei-Jun Cai, Meghan F. Cronin, Michael J. McPhaden, Julio M. Morell, Jan A. Newton, Jae-Hoon Noh, Sólveig R. Ólafsdóttir, Joseph E. Salisbury, Uwe Send, Douglas C. Vandemark, and Robert A. Weller

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (Editor review) (24 Jun 2016) by Jean-Pierre Gattuso
AR by Adrienne Sutton on behalf of the Authors (14 Jul 2016)  Author's response    Manuscript
ED: Publish subject to technical corrections (26 Jul 2016) by Jean-Pierre Gattuso
Download
Short summary
Ocean carbonate observations from surface buoys reveal that marine life is currently exposed to conditions outside preindustrial bounds at 12 study locations around the world. Seasonal conditions in the California Current Ecosystem and Gulf of Maine also exceed thresholds that may impact shellfish larvae. High-resolution observations place long-term change in the context of large natural variability: a necessary step to understand ocean acidification impacts under real-world conditions.
Altmetrics
Final-revised paper
Preprint