Articles | Volume 13, issue 9
https://doi.org/10.5194/bg-13-2859-2016
https://doi.org/10.5194/bg-13-2859-2016
Research article
 | 
13 May 2016
Research article |  | 13 May 2016

Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse

Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis

Abstract. Oceanic Anoxic Event 2 (OAE2), a  ∼  600 kyr episode close to the Cenomanian–Turonian boundary (ca. 94 Ma), is characterized by relatively widespread marine anoxia and ranks amongst the warmest intervals of the Phanerozoic. The early stages of OAE2 are, however, marked by an episode of widespread transient cooling and bottom water oxygenation: the Plenus Cold Event. This cold spell has been linked to a decline in atmospheric pCO2, resulting from enhanced global organic carbon burial. To investigate the response of phytoplankton to this marked and rapid climate shift we examined the biogeographical response of dinoflagellates to the Plenus Cold Event. Our study is based on a newly generated geochemical and palynological data set from a high-latitude Northern Hemisphere site, Pratts Landing (western Alberta, Canada). We combine these data with a semi-quantitative global compilation of the stratigraphic distribution of dinoflagellate cyst taxa. The data show that dinoflagellate cysts grouped in the Cyclonephelium compactum–membraniphorum morphological plexus migrated from high to mid-latitudes during the Plenus Cold Event, making it the sole widely found (micro)fossil to mark this cold spell. In addition to earlier reports from regional metazoan migrations during the Plenus Cold Event, our findings illustrate the effect of rapid climate change on the global biogeographical dispersion of phytoplankton.

Download
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past. Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
Altmetrics
Final-revised paper
Preprint