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Abstract. The land and ocean absorb on average just over

half of the anthropogenic emissions of carbon dioxide (CO2)

every year. These CO2 “sinks” are modulated by climate

change and variability. Here we use a suite of nine dynamic

global vegetation models (DGVMs) and four ocean biogeo-

chemical general circulation models (OBGCMs) to estimate

trends driven by global and regional climate and atmospheric

CO2 in land and oceanic CO2 exchanges with the atmo-

sphere over the period 1990–2009, to attribute these trends

to underlying processes in the models, and to quantify the

uncertainty and level of inter-model agreement. The mod-

els were forced with reconstructed climate fields and ob-

served global atmospheric CO2; land use and land cover

changes are not included for the DGVMs. Over the pe-

riod 1990–2009, the DGVMs simulate a mean global land

carbon sink of −2.4± 0.7 Pg C yr−1 with a small signifi-

cant trend of −0.06± 0.03 Pg C yr−2 (increasing sink). Over

the more limited period 1990–2004, the ocean models sim-

ulate a mean ocean sink of −2.2± 0.2 Pg C yr−1 with a

trend in the net C uptake that is indistinguishable from zero

(−0.01± 0.02 Pg C yr−2). The two ocean models that ex-

tended the simulations until 2009 suggest a slightly stronger,

but still small, trend of −0.02± 0.01 Pg C yr−2. Trends from

land and ocean models compare favourably to the land green-

ness trends from remote sensing, atmospheric inversion re-

sults, and the residual land sink required to close the global

carbon budget. Trends in the land sink are driven by increas-

ing net primary production (NPP), whose statistically sig-

nificant trend of 0.22± 0.08 Pg C yr−2 exceeds a significant

trend in heterotrophic respiration of 0.16± 0.05 Pg C yr−2 –

primarily as a consequence of widespread CO2 fertilisation

of plant production. Most of the land-based trend in simu-

lated net carbon uptake originates from natural ecosystems

in the tropics (−0.04± 0.01 Pg C yr−2), with almost no trend

over the northern land region, where recent warming and

reduced rainfall offsets the positive impact of elevated at-

mospheric CO2 and changes in growing season length on

carbon storage. The small uptake trend in the ocean mod-

els emerges because climate variability and change, and in

particular increasing sea surface temperatures, tend to coun-

teract the trend in ocean uptake driven by the increase in at-

mospheric CO2. Large uncertainty remains in the magnitude

and sign of modelled carbon trends in several regions, as well

as regarding the influence of land use and land cover changes

on regional trends.

1 Introduction

Soon after the first high-precision measurements of atmo-

spheric CO2 started in the late 1950s, it became clear that

the global-mean CO2 growth rate is substantially lower than

expected if all anthropogenic CO2 emissions remained in the

atmosphere (e.g. Keeling et al., 1976). The search for this

“missing” carbon and the identification of the processes driv-

ing carbon sinks has been one of the dominating questions

for carbon cycle research in the past decades (e.g. Tans et al.,

1990; Sarmiento and Gruber, 2002; and others). While much

progress has been achieved (e.g. Prentice et al., 2001; Sabine

et al., 2004; Denman et al., 2007; Le Quéré et al., 2009),

and estimates have converged considerably (Sweeney et al.,

2007; Khatiwala et al., 2013; Wanninkhof et al., 2013), the

spatial attribution of recent sink rates for the ocean and land,

and particularly their changes through time, remain uncer-

tain. To balance the global carbon budget, the combined sinks

by land and ocean must have increased over recent decades

(Keeling et al., 1995; Canadell et al., 2007; Raupach et al.,

2008; Sarmiento et al., 2010; Gloor et al., 2010; Ballantyne

et al., 2012). Sarmiento et al. (2010) showed that some of

the increasing sinks are driven by the ocean, but also iden-

tified an even more substantial increase in the net uptake by

the land biosphere between the 1980s and the 1990s. This in-

crease in the global land and ocean sink has been sustained

to date (Ballantyne et al., 2012).

There are several studies on the trends in carbon exchanges

at the regional level based on atmospheric CO2 observations

(top-down approach) (Angert et al., 2005; Buermann et al.,

2007; Chevallier et al., 2010; Sarmiento et al., 2010) and

changes in high-latitude greenness on land (Nemani et al.,

2003; Myneni et al., 1997) and changes in sea surface tem-

perature in the ocean (Park et al., 2010). Atmospheric CO2-

based top-down approaches provide large-scale constraints

on the land and ocean surface processes, but they cannot

unambiguously identify the underlying processes or the re-

gions driving these changes. Bottom-up studies using dy-

namic global vegetation models (DGVMs) or ocean biogeo-

chemical general circulation models (OBGCMs) mechanis-

tically represent many of the key land (Prentice et al., 2007)

and ocean processes (Le Quéré et al., 2005), and offer the

opportunity to investigate how changes in the structure and

functioning of land ecosystems and the ocean in response

to changing environmental conditions affect biogeochemi-

cal cycles. Therefore DGVMs and OBGCMs potentially al-

low for a more comprehensive analysis of surface carbon

trends and provide insight into possible mechanisms behind

regional trends in the carbon cycle.

There is a growing literature on regional carbon budgets

for different parts of the world (Ciais et al., 1995; Phillips

et al., 1998; Fan et al., 1998; Pacala et al., 2001; Janssens

et al., 2003; Stephens et al., 2007; Piao et al., 2009; Lewis

et al., 2009a; Ciais et al., 2010; Pan et al., 2011; Tjipu-

tra et al., 2010; Roy et al., 2011; Schuster et al., 2013;

Lenton et al., 2013), using bottom-up (inventory, carbon

cycle models) and top-down methodologies, although they

typically cover different time intervals. To date, no glob-

ally consistent attribution has been attempted for regional

sources and sinks of atmospheric CO2. This paper attempts

to fill this gap by combining top-down and bottom-up ap-

proaches discussed in the regional syntheses of the REgional
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Carbon Cycle Assessment and Processes project (RECCAP;

Canadell et al., 2013) and by using factorial simulations to

elucidate the processes that drive trends in the sources and

sinks of atmospheric CO2.

This study has two major aims. The first of these is to es-

timate the regional trends in the carbon exchange over the

period 1990–2009, associated with changes in climate and at-

mospheric CO2 concentration, for three land regions (north-

ern land, tropical land, and southern land) and seven ocean

regions (North Pacific, equatorial Pacific, South Pacific,

North Atlantic, equatorial/South Atlantic, Indian Ocean, and

Southern Ocean) (Fig. 1). The second aim is to determine

which factors and processes among those included in the

models are driving the modelled/observed trends in the re-

gional land/ocean to atmosphere net CO2 fluxes. For the land

models, those factors and processes included are the CO2 fer-

tilisation effect on productivity and storage, as well as cli-

mate effects on productivity, respiration, and climate-caused

natural disturbances (see Table S1 in the Supplement for de-

tails represented in individual models). A particular focus

is on the impacts of climate variation and change on land

ecosystems at the regional scale, as extreme climate events

occurred during the period of 1990–2009 across many re-

gions of the world, including North America (southwestern

USA, 2000–2002), Europe (2003), Amazonia (2005), and

eastern Australia (2001–2008), raising considerable attention

in the ecological community regarding the consequences of

recent climate variability on ecosystem structure and func-

tion (Allen et al., 2010) and the carbon cycle (Ciais et al.,

2005; Van der Molen et al., 2011; Reichstein et al., 2013).

This study addresses the changes in the magnitude of the

global carbon sink but does not discuss the efficiency of the

sinks, which is widely discussed elsewhere (Raupach et al.,

2014; Gloor et al., 2010; Ciais et al., 2013). These DGVMs

have been extensively evaluated against observation-based

gross primary production (GPP), land to atmosphere net CO2

flux, and CO2 sensitivity of net primary production (NPP)

compared to results from free-air CO2 enrichment (FACE)

experiments (Piao et al., 2013).

Consideration of land use and land cover change (LULCC)

on regional trends is beyond the scope of the present

study, and therefore models assume a fixed present-day

land use throughout the simulation period. Thus our re-

sults presented should be interpreted with this caveat in

mind. There are large uncertainties in the global LULCC

flux and its change through time, with an estimated decrease

from 1.6± 0.5 Pg C yr−1 (1990–1999) to 1.0± 0.5 Pg C yr−1

(2000–2009) (LeQuéré et al., 2013). In addition, the net land

use (LU) flux for the period 1990–2009 will be influenced by

earlier LULCC (i.e. legacy fluxes), confounding the analysis.

The response of the large fluxes associated with net primary

productivity and heterotrophic respiration to climate variabil-

ity and CO2 are the focus of this study. Other companion pa-

pers investigate ecosystem response to interannual and sea-

sonal timescales (Piao et al., 2013), and the carbon balance

Figure 1. Land and ocean regions. The three land regions: north-

ern land, tropical land, and southern land. Northern land com-

prises boreal North America (navy blue), Europe (light blue), bo-

real Asia (blue), temperate North America (pale red), and tem-

perate Asia (red). Tropical land comprises tropical South Ameri-

can forests (sea green), northern Africa (sand), equatorial Africa

(green), and tropical Asia (dark green). Southern land comprises

South American savanna (pale green), temperate South America

(violet), southern Africa (orange), and Australia and New Zealand

(yellow). Ocean regions comprise North Pacific (dark red), equa-

torial Pacific (orange-red), South Pacific (orange), North Atlantic

(orchid), equatorial/South Atlantic (slate blue), Indian Ocean (this-

tle), Southern Ocean (sky blue), and Arctic Ocean and Antarctica

(white).

for individual land and ocean regions over the period 1990–

2009 (see RECCAP special issue; Canadell et al., 2013,

http://www.biogeosciences.net/special_issue107.html).

Trends and variability in the air–sea CO2 fluxes simulated

by the employed OBGCMs are driven by the increase in at-

mospheric CO2 and by variability and change in ocean tem-

perature, circulation, winds, and biology largely governed

by climate variability. The air–sea CO2 flux arising from

the increase in atmospheric CO2 is often referred to as the

flux of anthropogenic CO2, while the remainder, induced

by changes in the natural cycling of carbon in the ocean–

atmosphere system, is called the “natural” CO2 component

(e.g. Gruber et al., 2009). Although this conceptual separa-

tion has its limits (McNeill and Matear, 2013), it provides

for a powerful way to understand how different forcings af-

fect the net ocean sink.

DGVM results are compared with estimates of the resid-

ual land sink (RLS) and remote sensing products indicat-

ing trends of greening and browning in the northern region.

Regional sources and sink trends are attributed to processes

based on factorial simulations.

2 Methods

2.1 Dynamic global vegetation models

Following the studies of Le Quéré et al. (2009) and Sitch et

al. (2008), a consortium of DGVM groups set up a project

www.biogeosciences.net/12/653/2015/ Biogeosciences, 12, 653–679, 2015
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to investigate further the spatial trends in land–atmosphere

flux and agreed to perform a factorial set of DGVM simu-

lations over the historical period, 1901–2009. These simula-

tions have contributed to the RECCAP activity (Canadell et

al., 2011, 2013). There are now a variety of DGVMs with ori-

gins in different research communities that typically contain

alternative parameterisations and a diverse inclusion of pro-

cesses (Prentice et al., 2007; Piao et al., 2013). DGVMs have

emerged from the land surface modelling (LSM), forest ecol-

ogy, global biogeography, and global biogeochemical mod-

elling communities. Representative of these research strands

are the following nine DGVMs, which are applied here: Hy-

land (Levy et al., 2004), JULES (Cox, 2001; Clark et al.,

2011), LPJ (Sitch et al., 2003), LPJ-GUESS (Smith et al.,

2001), NCAR-CLM4 (Thornton et al., 2007, 2009; Bonan

and Levis, 2010; Lawrence et al., 2011), ORCHIDEE (Krin-

ner et al., 2005), OCN (Zaehle and Friend, 2010), SDGVM

(Woodward et al., 1995; Woodward and Lomas, 2004), and

VEGAS (Zeng, 2003; Zeng et al., 2005). In this study we fo-

cus on two aspects of land surface modelling: the carbon and

the hydrological cycles. In the case of land surface models

coupled to GCMs, energy exchange between the land surface

and atmosphere is also simulated.

2.2 Ocean biogeochemical general circulation models

A total of four different groups have conducted the fac-

torial simulations over the analysis period with three-

dimensional OBGCMs and submitted their results to the

RECCAP archive. These are MICOM-HAMOCCv1 (BER)

(Assmann et al., 2010), CCSM-WHOI using CCSM3.1

(BEC) (Doney et al., 2009a, b), CCSM-ETH using CCSM3.0

(ETH) (Graven et al., 2012), and NEMO-PlankTOM5 (UEA)

(Buitenhuis et al., 2010). Details of the models are given

in the respective publications cited and in Table 2. Not all

model simulations are independent of each other, as sev-

eral of them share components. BEC and ETH employ the

same OBGCM, but differ in their spin-up and surface forc-

ing. The employed models have relatively similar horizontal

resolution of the order of 1 to 3◦ in longitude and latitude,

i.e. none of them is eddy-permitting or eddy-resolving. The

four ecosystem/biogeochemical models are also of compara-

ble complexity, i.e. including explicit descriptions of at least

one phytoplankton and zooplankton group, with some mod-

els considering up to three explicitly modelled groups for

phytoplankton and two for zooplankton. All models use the

same gas exchange parameterisation of Wanninkhof (1992),

although with different parameters. In particular, the ETH

model used a lower value for the gas exchange coefficient

than originally used in the CCSM standard configuration,

yielding a global-mean gas transfer velocity that is more than

25 % lower than those of the other models (Graven et al.,

2012). This reduction reflects the mounting evidence based

on radiocarbon analyses that the original global-mean gas

transfer velocity of Broecker et al. (1985) was too high (Pea-

cock, 2004; Sweeney et al., 2007; Müller et al., 2008).

2.3 Data sets

2.3.1 Land

Climate forcing is based on a merged product of Cli-

mate Research Unit (CRU) observed monthly 0.5◦ clima-

tology (v3.0, 1901–2009; New et al., 2000) and the high-

temporal-resolution NCEP reanalysis. The merged product

has a 0.5◦ spatial and 6 h temporal resolution. A coarse-

resolution 3.75◦× 2.5◦ version at monthly timescales was

also produced (see Table 1 for spatial resolution of individ-

ual DGVMs). Global atmospheric CO2 was derived from ice

core and NOAA monitoring station data, and provided at

annual resolution over the period 1860–2009. As land use

and land cover change was not simulated in these model

experiments, models assume a constant land use (invariant

agricultural coverage) throughout the simulation period. At-

mospheric nitrogen deposition data for CLM4CN and OCN

were sourced from Jean-Francois Lamarque (personal com-

munication, 2012) and Dentener et al. (2006), respectively.

Gridded fields of leaf area index (LAI) are used in the eval-

uation of DGVM northern greening trends. These LAI data

sets were based on remote sensing data and were generated

from the AVHRR GIMMS NDVI3g product using an artifi-

cial neural network (ANN)-derived model (Zhu et al., 2013).

The data set has a temporal resolution of 15 days over the

period 1981–2011, and a spatial resolution of 1/12◦.

2.3.2 Ocean

Unlike how the land models simulations were set up, no com-

mon climatic forcing data set was used for the ocean model

simulations. In fact, some models provided several simula-

tion results obtained with different climatic forcings. Models

were forced by the NCEP climatic data (Kalnay et al., 1996)

in their original form, or in the modified CORE (Common

Ocean-ice Reference Experiments – Corrected Normal Year

Forcing (CORE-CNYF; Large and Yeager, 2004)) form (Ta-

ble 2).

2.3.3 Atmospheric inversion

Simulated trends in land to atmospheric net CO2 flux are

compared with those from version 11.2 of the CO2 inver-

sion product from the Monitoring Atmospheric Composi-

tion and Climate – Interim Implementation (MACC-II) ser-

vice (http://copernicus-atmosphere.eu/). The horizontal res-

olution of the inversion is 3.75× 2.5 square degrees (longi-

tude× latitude), and weekly temporal resolution, with night-

time and daytime separated. The accuracy varies with the pe-

riod and the location over the globe, depending on the den-

sity and the information content of the assimilated data, and

usually decreases with increasing the resolution. Uncertainty

Biogeosciences, 12, 653–679, 2015 www.biogeosciences.net/12/653/2015/
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Figure 2. Global trends in environmental driving variables: (a) land

temperature, (b) land precipitation, (c) ocean temperature, (d) wind

speed, (e) N deposition, and (f) atmospheric [CO2].

numbers at various scales can be found in Table 2 of Peylin

et al. (2013). The inversion covers years 1979–2011, and

a previous release has been documented by Chevallier et

al. (2010). It uses a climatological prior without interannual

variability, except for fossil fuel CO2 emissions.

2.4 Experimental design

2.4.1 Land

Model spin-up consisted of recycling climate mean and

variability from the early decades of the 20th century

(1901–1920) with 1860 atmospheric CO2 concentration of

287.14 ppm until carbon pools and fluxes were in steady state

(zero mean annual land to atmospheric net CO2 flux). The

land models were then forced over the 1861–1900 transient

simulation using varying CO2 and continued recycling of cli-

mate as in the spin-up. The land models were then forced

over the 1901–2009 period with changing CO2, climate, and

fixed present-day land use according to the following simu-

lations:

– S_L1: changing CO2 only (i.e. time-invariant present-

day land use mask, fixed pre-industrial climate);

– S_L2: changing CO2 and climate (i.e. time-invariant

present-day land use mask).

For DGVMs including the N cycle, N deposition was a

time-variant forcing in both simulations, such that the differ-

ence between S_L2 and S_L1 includes the synergistic effects

of N deposition on CO2 fertilisation (Zaehle et al., 2010).

Figure 2 shows the historical changes in climate, atmo-

spheric CO2 concentration, and nitrogen deposition over the

period 1990–2009 used to force the DGVMs. A summary of

DGVM characteristics is given in Table 1. A more detailed

description of DGVM process representations is given in Ta-

ble S1.

2.4.2 Ocean

The ocean models employed two different approaches for

creating the initial conditions for the experiments. The first

approach, followed by CCSM-ETH, CCSM-WHOI, and

BER, involved first a multiple-century-long spin-up with cli-

matological forcing and with atmospheric CO2 held constant

at its pre-industrial value, bringing these models very close

to a climatological steady state for pre-industrial conditions

(in some models ∼ 1750; in others ∼ 1850). In the second

step, the models were then integrated forward in time through

the historical period until 1948, with atmospheric CO2 pre-

scribed to follow the observed trend and a climatological

forcing. The length of the spin-up varies from a few hun-

dred years to several thousand years, resulting in differing

global integrated drift fluxes, although their magnitudes are

substantially smaller than 0.05 Pg C yr−1 with essentially no

rate of change. The second approach, followed by NEMO-

PlankTOM5 (UEA), was to initialise the model with recon-

structed initial conditions in 1920, and then also run it for-

ward in time until 1948 with prescribed atmospheric CO2,

repeating the daily forcing conditions of a single year (1980).

The modelled export production was tuned to obtain an ocean

CO2 sink of 2.2 Pg C yr−1 in the 1990s. This second method

offers the advantage that the model’s carbon fields remain

closer to the observations compared to the long spin-up ap-

proach, but it comes at the cost of generating a drift that af-

fects the mean conditions and to a lesser extent the trend.

Tests with the model runs of Le Quéré et al. (2010) suggest

the drift in the mean CO2 sink is about 0.5 Pg C yr−1 and

the drift in the trend is about 0.005 Pg C yr−2 globally, and is

largest in the Southern Ocean.

From ∼ 1950 onward, the models performed two separate

simulations:

– S_O1: CO2 only, i.e. atmospheric CO2 increases, but

models are forced with climatological atmospheric

boundary conditions (referred to as ACO2 in the REC-

CAP archive);

– S_O2: CO2 and climate, i.e. as S_O1, but models are

forced with “realistic” year-to-year variability in atmo-

spheric boundary conditions (ANTH).

In these runs, both S_O1 and S_O2 are affected by the same

drift, and their differences thus remove the drift. The CCSM-

based models performed an additional experiment to bet-

ter separate between the fluxes of natural and anthropogenic

CO2:

www.biogeosciences.net/12/653/2015/ Biogeosciences, 12, 653–679, 2015
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Table 1. Characteristics of the nine dynamic global vegetation models.

Model name Abbreviation Spatial Land surface Full nitrogen River export Fire Harvest/grazing Source

resolution model cycle flux simulation flux

Community Land CLM4CN 0.5◦× 0.5◦ Yes Yes No Yes No Oleson et al. (2010);

Model 4CN Lawrence et al. (2011)

Hyland HYL 3.75◦× 2.5◦ No No No No Yes Friend et al. (1997);

Levy et al. (2004)

Lund–Potsdam–Jena LPJ 0.5◦× 0.5◦ No No No Yes Yes Sitch et al. (2003)

LPJ-GUESS LPJ-GUESS 0.5◦× 0.5◦ No No No Yes No Smith et al. (2001)

ORCHIDEE-CN OCN 3.75◦× 2.5◦ Yes Yes No No Yes Zaehle and Friend (2010);

Zaehle et al. (2010)

ORCHIDEE ORC 0.5◦× 0.5◦ Yes No No No No Krinner et al. (2005)

Sheffield-DGVM SDGVM 3.75◦× 2.5◦ No No Yes Yes No Woodward et al. (1995)

TRIFFID TRI 3.75◦× 2.5◦ Yes No No No No Cox (2001)

VEGAS VEGAS 0.5◦× 0.5◦ Yes No Yes Yes Yes Zeng et al. (2005)

Table 2. Characteristics of the four ocean biogeochemical general circulation models (OBGCMs). All include NPZD-type ecosystem models

and N, P, Si, and Fe nutrient components.

Model name Abbreviation Spatial resolution Meteorological Gas transfer Years used Source

forcing formulation

MICOM-HAMOCCv1 BER 2.4◦× 0.8−2.4◦ NCEP Wanninkhof (1992) 1990 to 2009 Assmann et al. (2010)

CCSM-WHOI BEC 3.6◦× 0.8−1.8◦ NCEP Wanninkhof (1992) 1990 to 2009 Doney et al. (2009a, b)

CCSM-ETH ETH 3.6◦× 0.9× 1.9◦ CORE Wanninkhof (1992) 1990 to 2007 Graven et al. (2012)

NEMO-PlankTOM5 UEA 2◦× 0.5−2◦ NCEP Wanninkhof (1992) 1990 to 2009 Buitenhuis et al. (2010)

– S_O3: pre-industrial CO2 and climate, i.e. atmospheric

CO2 is fixed at its pre-industrial level, but atmospheric

boundary conditions vary as in S_O2 (PIND).

From these simulations, only the results from 1990 through

to 2009 were analysed. Only the UEA and CCSM-WHOI

models made results available for the S_O1 and S_O2 simu-

lations for the entire analysis time. The results for the BER

model for 2009 are incomplete, and the CCSM-ETH simula-

tions extend only to 2007. In order to maintain a sufficiently

large set of models, we decided to focus our analysis primar-

ily on the 1990–2004 period, but occasionally also include

the results through to 2009, with the important caveat that

the latter are based only on two models.

2.5 Output variables

2.5.1 Land

In this study we focus primarily on the simulated carbon cy-

cle variables, net NPP, RH (heterotrophic respiration), and

LAI, a measure of vegetation greenness. The land to atmo-

sphere net CO2 flux is

land to atmosphere netCO2 flux=−NBP

= RH+wildfire flux riverine C flux+ harvest−NPP,

where we have adopted the atmospheric perspective with re-

gard to the sign of the fluxes, i.e. negative numbers indicate

a sink for atmospheric CO2 and a negative trend indicates an

increasing sink or a decreasing source.

DGVMs typically do not represent all these processes; a

list for each individual DGVM is given in Table 1. DGVM

results for simulation S_L2 are compared against the global

RLS, calculated as the annual anthropogenic CO2 emissions

(fossil fuel, cement manufacture, and land use C flux) mi-

nus the annual CO2 growth rate and model mean ocean C

sink as given by Friedlingstein et al. (2010). The ocean up-

take is from the same OGGCMs as the ones used here, and

the land use C flux is based on a book-keeping approach from

Houghton (2010). Note the RLS depends on a LULCC model

of emissions (the one of Houghton). Strictly speaking, com-

parison of model land to atmosphere net CO2 flux with RLS

is therefore inconsistent because these models treat areas af-

fected by LUC as pristine ecosystems, and these areas are

generally associated with a high land carbon sinks. Simulated

net carbon flux from S2 is therefore likely to overestimate the

RLS sink, by construction.

The regional analysis will focus on three large land regions

(Fig. 1), and within these regions, trends at a finer spatial res-

olution, from multi-grid-cell to the sub-region, are analysed.

The comparison of DGVM simulated trends in the north-

ern growing season against satellite-derived NDVI (nor-

malised difference vegetation index) observations was based

on eight models (JULES, LPJ, LPJ-GUESS, NCAR-CLM4,

ORCHIDEE, OCN, SDGVM, VEGAS), which provided

LAI outputs. The means and trends in the onset, end, and

length of growing season were computed. Growing season

variables were calculated using the methodology of Murray-

Tortarolo et al. (2013). Leaf onset is defined as the day when

LAI begins to increase above a critical threshold (CT), de-

fined as

CT= LAImin+ 0.2 · (LAImax−LAImin),
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where LAImin and LAImax represent the minimum and max-

imum LAI over the annual cycle. Similarly, leaf senescence,

or offset, or end of growing season, is defined as the day

when LAI decreases below the CT. The length of the grow-

ing season in days is calculated as the end minus the onset.

This calculation was made for each grid cell above 30◦ N

(i.e. northern extratropics) from the models and the satellite

data. In addition, any grid cell where LAI varied by less than

0.5 over the annual cycle from the satellite data was consid-

ered to be predominantly evergreen (e.g. boreal forest), and

thus excluded from the analysis. We also masked out regions

where LAI decreases in the summer (drought deciduous veg-

etation). In addition, when the growing season spans over the

end of year (e.g. Mediterranean and some pixels particularly

on the southern margin of the domain), we include the first 3

months of the second year in our analysis. Means and trends

were calculated using a linear model over the period 1990–

2009.

2.5.2 Ocean

The modelling groups provided output on a monthly basis

for the years 1990 through to 2004 and 2009 at two levels

of priority. Tier-one data included the surface ocean fields of

the air–sea CO2 flux, oceanic pCO2, dissolved inorganic car-

bon (DIC), alkalinity (Alk), temperature (T ), salinity (S), and

mixed layer depth. The second-tier data included the biologi-

cal export at 100 m, the vertically integrated net primary pro-

duction, and the surface chlorophyll a concentration. Some

models also supplied three-dimensional climatological fields

of DIC, Alk, T , and S.

To determine the different factors contributing to the mod-

elled trends and variations, we undertook two (linear) sepa-

rations:

– The contribution of climate variability and change on

the ocean carbon cycle: X_var=X(S_O2)−X(S_O1),

X is any variable or flux, where the expression in paren-

theses represents the results of the corresponding sim-

ulation, and X_var represents the impact of climate

change and variability on the ocean carbon cycle.

– The contribution of anthropogenic CO2:

X_ant=X(S_O2)−X(S_O3).

For each of the integrations, but particularly for the changing

CO2 and climate simulation S_O2, we analysed the factors

contributing to the temporal change in the air–sea CO2 flux

F by a linear Taylor expansion (see e.g. Lovenduski et al.,

2007 and Doney et al., 2009a):

1F = ∂F/∂ws ·1ws+ ∂F/∂T ·1T + ∂F/∂ice

·1ice+ ∂F/∂sDIC ·1sDIC

+ ∂F/∂sAlk ·1sAlk+ ∂F/∂FS ·1S,

where ws is the wind speed, ice is the sea-ice fraction, sDIC

and sAlk are the salinity normalised DIC and Alk concentra-

tions, and ∂F/∂FS is the change in the air–sea CO2 flux in re-

sponse to freshwater fluxes. This latter term includes not only

the sensitivity of oceanic pCO2 to changes in salinity but also

the dilution effects of freshwater on DIC and Alk (see Doney

et al., 2009a, for details). The partial derivatives were com-

puted directly from the model equations for the mean condi-

tions in each region. The changes in the driving components

were derived from the trend computed via a linear regression

of the model results and then multiplied by the length of the

time series.

3 Results

3.1 Global Trends

3.1.1 Land

The ensemble mean global land to atmosphere net carbon

dioxide flux from S_L2 is −2.38± 0.72 Pg C yr−1 over the

period 1990–2009 (P = 0.04, where P is the probability of a

trend statistically indistinguishable from zero; a significance

level of 0.05 is selected) (Fig. 3, Fig. S1 in the Supplement,

Table 3). The numbers behind ± signs are the 1 standard de-

viation of 20-year means for nine DGVMs. This compares

to the global RLS of −2.45± 1.17 Pg C yr−1, inferred from

the global carbon budget by Friedlingstein et al. (2010) over

the same period. All DGVMs agree on an increasing land

sink with a net flux trend over this period ranging between

−0.02 and −0.11 Pg C yr−2, corresponding to the OCN and

Hyland DGVMs, respectively (Table 3). DGVMs simulate

an increase in the land C sink with an ensemble mean trend

of −0.06± 0.03 Pg C yr−2 (P < 0.05) over the period 1990–

2009 (Table 3) in response to changes in climate and atmo-

spheric CO2 content. The two DGVMs with a fully cou-

pled carbon and nitrogen cycle (CN) also simulate an in-

crease in the land sink, at −0.02 (P = 0.6) for OCN and

−0.05 Pg C yr−2 (P = 0.06) for CLM4CN. DGVMs suggest

the increase in global land sink between 1990 and 2009 is

driven by increases in simulated global NPP (Fig. 3).

DGVMs simulate an ensemble mean global NPP of

62.9± 8.73 Pg C yr−1 over the period 1990–2009 (Table 3).

All DGVMs simulate an increase in NPP over this pe-

riod, with an ensemble mean DGVM trend in NPP of

0.22± 0.08 Pg C yr−2 (P = 0.00) (Table 3). Models with a

higher NPP trend also produce a higher land to atmosphere

net CO2 flux trend (Fig. S2 in the Supplement). The ensem-

ble mean NPP trend of 0.22± 0.08 Pg C yr−2 (P < 0.01) from

simulation S_L2 (CO2 and climate forcing) contrasts with

an ensemble trend of 0.19± 0.08 Pg C yr−2 (P < 0.01) and

0.03± 0.05 Pg C yr−2 (P = 0.24) over the same period for

the S_L1 (CO2 only) and S_L2–S_L1 (the climate effect),

respectively (Tables S2, S3 in the Supplement). These re-

sults suggest that the simulated increase in global NPP is

mainly in response to increasing atmospheric CO2 (direct
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Figure 3. Global trends in ensemble land model responses.

(a) DGVM mean model land to atmosphere net CO2 flux and stan-

dard deviation (grey lines); (b) component fluxes, NPP; and (c) RH

(=RH+wildfire+ riverine C flux); and (d) remotely sensed trends

in annual mean NDVI (crosses), a measure of vegetation greenness,

and a linear regression through the data points (bold line).

CO2 fertilisation of photosynthesis, in addition to the indirect

benefits from an improved water balance in water-limited

ecosystems due to the physiological effects of CO2 on wa-

ter use efficiency). VEGAS, CLM4CN, and OCN simulate

the smallest positive trends in NPP among the DGVMs in re-

sponse to elevated CO2 forcing (Table S2). This suggests that

the potential CO2 fertilisation effect may be already strongly

limited by present-day nitrogen availability in some ecosys-

tems (Vitousek and Howarth, 1991). There is more uncer-

tainty among models on the impact of climate changes on

global NPP, with only two models simulating a significant

positive trend (Table S3).

DGVMs simulate an ensemble mean global RH of

57.5± 9.8 Pg C yr−1 over the period 1990–2009 (Table 3).

All DGVMs simulate an increase in RH for S_L2

(CO2 and climate), with an ensemble mean trend of

Figure 4. Global trends in ensemble ocean model fluxes. Black line:

results from simulation S_O2 with variable “climate” and increas-

ing CO2. Red line: results from simulation S_O1 with constant “cli-

mate” and increasing CO2. The dashed grey and dashed red lines

indicate the ± uncertainty bands given by the four models that con-

tribute to the ensemble mean.

0.16± 0.05 Pg C yr−2 (P < 0.01) over the period 1990–2009

(Table 3). This is lower than the trend in global NPP, resulting

in a trend towards increasing net land carbon uptake. This is

unsurprising as there is a lagged response in increases in RH

relative to NPP, reflecting the turnover time of the newly in-

corporated plant material. The ensemble mean trend in RH is

0.12± 0.06 Pg C yr−2 (P < 0.01) and 0.04± 0.02 Pg C yr−2

(P = 0.09) over the same period for the S_L1 (CO2 only)

and S_L2–S_L1 (the climate effect), respectively (Tables S2,

S3). This implies the dominant effect on RH is increased

substrate for microbial respiration, with the additional lit-

ter input into soils, as a consequence of enhanced NPP,

rather than enhanced rates of microbial decomposition with

rising temperatures. Nevertheless, the simulated mean resi-

dence time (MRT= soil carbon / RH) of soil organic mat-

ter decreases, in response to warming, which is especially

pronounced in high-latitude regions (Fig. S3 in the Sup-

plement). The difference in land–atmosphere flux trend be-

tween the CN models OCN (−0.02 Pg C yr−2) and CLM4CN

(−0.05 Pg C yr−2) is largely due their difference in RH trends

at 0.14 and 0.11 Pg C yr−2, respectively, rather than differen-

tial responses of simulated NPP to elevated CO2 (Table 3).

Only four DGVMs simulated wildfire fluxes (CLM4CN,

LPJ, LPJ-GUESS, SDGVM). No significant trends in the

global wildfire flux were reported by any of the DGVMs.

3.1.2 Ocean

The global ocean is simulated to have acted as a very sub-

stantial sink for atmospheric CO2 but one that has increased

only slightly over the last two decades (see also discus-

sion in Wanninkhof et al., 2013). The mean ocean sink in

the four models (CCSM-ETH, CCSM-WHOI, UEA, and

BER) increased from ∼−2.0 Pg C yr−1 in the early 1990s to
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∼−2.1 Pg C yr−1 during the first 5 years of the 21st century

(Fig. 4).

We separate the mean and variable components by us-

ing our factorial experiments, i.e. by using S_O1 results to

identify the ocean uptake in the absence of climate variabil-

ity and change, and the difference between S_O2 and S_O1

as measure of the impact of climate change. This separa-

tion reveals that, in the absence of climate variability and

change, the global ocean uptake would have increased from

about −1.98± 0.04 Pg C yr−1 for the 1990–1994 period to

−2.3± 0.09 Pg C yr−1 for 2000–2004 (for the two models

that provided S_O1 results up to 2009 (CCSM-WHOI and

UEA), the uptake flux would have increased from −1.99

to −2.56 Pg C yr−1 for 2005–2009). This global net uptake

flux and its substantial trend in time (−0.03 Pg C yr−2 for

1990–2004, and −0.04 Pg C yr−2 for 1990–2010) is entirely

driven by the increase in atmospheric CO2 and is – integrated

globally – numerically equivalent to the ocean uptake flux

of anthropogenic CO2. Climate variability and change mod-

ified these fluxes, and particularly the trend in these mod-

els. The four models suggest an enhancement of the uptake

in the early 1990s (1990–1994) of about −0.2 Pg C yr−1,

turning into a reduction of the uptake in the subsequent pe-

riod (1995–1999), followed by a further reduction in the

2000–2004 period of ∼+0.1 Pg C yr−1. This trend toward

reduced uptake in response to climate variability and change

of +0.03 Pg C yr−2 nearly completely compensates for the

anthropogenic CO2 driven increase in uptake, causing the

overall uptake of CO2 to have a nearly flat trend over the

1990–2004 period of < 0.01 Pg C yr−2 The same tendencies

are found for the two models that extend over the entire

1990–2009 period: in these models, climate change and vari-

ability reduces the CO2-driven trend of −0.04 Pg C yr−2 by

more than +0.02 Pg C yr−2, to around −0.02 Pg C yr−2.

With consideration of the different factors affecting the

ocean carbon sink following our Taylor expansion, we find

increasing sea surface temperature to be a globally im-

portant driver for the positive trends (reduced sinks) in-

duced by climate change and variability. Over the 1990–

2004 period, the surface ocean warmed, on average, by

0.004 ◦C yr−1 (0.005 ◦C yr−1 from 1990 through to 2009).

Isochemically, this leads to an increase in the oceanic pCO2

of ∼ 0.06 µatm yr−1, which appears small. However, it needs

to be compared with the trend in the global-mean air–

sea pCO2 difference of about ∼ 0.1 µatm yr−1 that is re-

quired in order to generate a trend in the ocean uptake

of −0.03 Pg C yr−2 (see e.g. Matsumoto and Gruber, 2005;

Sarmiento and Gruber, 2006). The overall sink is therefore

largely a consequence of the increase in atmospheric CO2

(i.e. it mostly corresponds to the uptake flux of anthropogenic

CO2), but it includes a substantial perturbation flux stem-

ming from the impact of climate variability and change on

the ocean carbon cycle.

3.2 Regional trends

3.2.1 Land

Northern land

All DGVMs agree on a land C sink over the north-

ern land region, with a mean land–atmosphere flux of

−1.03± 0.30 Pg C yr−1 over the period 1990–2009 (Fig. S4

in the Supplement, Table 3). The ensemble mean land–

atmosphere flux trend is near zero for this region between

1990 and 2009 (Fig. S5 in the Supplement). Of particu-

lar interest are sub-regions with a simulated positive land–

atmosphere flux trend (Fig. 5), implying a diminishing sink

of atmospheric CO2 or an increasing source of CO2 to the at-

mosphere. At least six models out of nine agree on a decreas-

ing regional land sink across some areas in temperate North

America, eastern Europe, northeastern China, and Mongolia

(Fig. 5). These largely correspond to regions with negative

trends in precipitation (Fig. 6).

Over the northern region, which covers almost 50 % of

the land surface, DGVMs simulate an ensemble mean NPP

of 24.1± 4.48 Pg C yr−1, which represents almost 40 % of

the global total (Table 3). All DGVMs simulate an increase

in northern NPP over this period, with a trend in NPP

of 0.06± 0.02 Pg C yr−2 (P < 0.01) (Table 3). However, en-

hanced productivity in the northern land region accounts

for only around 29 % of the simulated global trend in NPP.

The ensemble mean NPP trend of 0.06± 0.02 Pg C yr−2

(P < 0.01) from simulation S2 (CO2 and climate forcing)

compares to a trend of 0.07± 0.03 Pg C yr−2 (P < 0.01) and

−0.00± 0.04 Pg C yr−2 (P = 0.85) for the S_L1 (CO2 only)

and S_L2–S_L1 (the climate effect), respectively (Tables S2,

S3). All DGVMs simulate a positive trend in NPP in response

to elevated CO2 across the northern land region, and trends

are all significant at the 95 % confidence level with the ex-

ception of CLM4CN (P = 0.21).

Large areas in temperate North America and Asia ex-

perienced warming combined with reductions in precipita-

tion over the period 1990–2009 (Fig. 5). Indeed, although

DGVMs simulate larger mean NPP in temperate compared

to boreal regions (Table S5 in the Supplement), they simu-

late significant positive trends in boreal North America and

boreal Asia, whereas trends in both temperate North Amer-

ica and Asia are smaller and not significant at the 95 % con-

fidence level (Table S5).

In response to warming, models simulate an earlier onset

(ensemble mean model trend=−0.078± 0.131 days yr−1)

and delayed termination of the growing season

(0.217± 0.097 days yr−1) based on LAI, and thus a

trend towards a longer growing season in the north-

ern extratropics (0.295± 0.228 days yr−1) (Fig. 7). This

is in broad agreement with observed greening trends

(Zhu et al., 2013; Murray-Tortarolo et al., 2013): on-

set=−0.11 days yr−1, offset= 0.252 days yr−1, and
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Table 3. Mean and trends in NPP, RH, and land–atmosphere flux as simulated by individual DGVMs and the ensemble mean.

MODEL NPP Trend P value RH Trend P value Land–atm CO2 Trend P value

(Pg C yr−1) (Pg C yr−2) (Pg C yr−1) (Pg C yr−2) flux (Pg C yr−1) (Pg C yr−1)

Global_Land

CLM4CN 51.508 0.148 0.000 47.668 0.106 0.000 −1.459 −0.052 0.059

HYLAND 73.422 0.319 0.000 68.835 0.203 0.000 −3.466 −0.109 0.000

LPJ 59.306 0.216 0.000 47.612 0.117 0.000 −2.251 −0.068 0.061

LPJ-GUESS 62.506 0.174 0.000 55.448 0.145 0.000 −1.802 −0.043 0.346

OCN 53.941 0.155 0.000 50.611 0.135 0.000 −2.272 −0.015 0.568

ORCHIDEE 75.516 0.293 0.000 72.037 0.208 0.000 −3.479 −0.086 0.046

SDGVM 60.965 0.240 0.000 53.778 0.190 0.000 −2.127 −0.044 0.170

TRIFFID 71.929 0.305 0.000 69.167 0.244 0.000 −2.762 −0.061 0.265

VEGAS 57.308 0.113 0.006 51.930 0.092 0.000 −1.783 −0.018 0.551

Ensemble 62.934 0.218 0.000 57.454 0.160 0.000 −2.378 −0.055 0.048

SD 8.729 0.076 9.791 0.053 0.721 0.030

Northern_Land

CLM4CN 17.523 0.043 0.003 16.215 0.036 0.000 −0.670 −0.007 0.612

HYLAND 19.139 0.098 0.000 17.591 0.080 0.000 −0.876 −0.014 0.311

LPJ 24.566 0.079 0.001 19.578 0.062 0.006 −1.168 −0.006 0.735

LPJ-GUESS 28.484 0.039 0.085 25.883 0.067 0.009 −0.634 0.023 0.521

OCN 21.008 0.044 0.035 19.264 0.047 0.008 −1.117 0.007 0.632

ORCHIDEE 30.337 0.070 0.007 29.112 0.063 0.000 −1.226 −0.006 0.740

SDGVM 25.144 0.063 0.006 22.598 0.065 0.006 −0.828 0.004 0.762

TRIFFID 28.476 0.088 0.009 27.006 0.103 0.001 −1.470 0.016 0.455

VEGAS 21.895 0.048 0.012 18.914 0.043 0.001 −1.322 −0.000 0.968

Ensemble 24.064 0.063 0.001 21.796 0.063 0.001 −1.034 0.002 0.865

SD 4.484 0.022 4.562 0.020 0.295 0.012

Tropical_Land

CLM4CN 26.400 0.090 0.000 24.464 0.058 0.000 −0.692 −0.039 0.110

HYLAND 34.489 0.112 0.000 32.695 0.067 0.000 −1.560 −0.044 0.001

LPJ 25.830 0.100 0.001 21.224 0.035 0.001 −0.817 −0.049 0.031

LPJ-GUESS 21.922 0.078 0.000 19.332 0.051 0.000 −0.785 −0.036 0.038

OCN 22.750 0.084 0.000 21.476 0.065 0.000 −0.982 −0.017

ORCHIDEE 31.313 0.151 0.000 29.640 0.108 0.000 −1.673 −0.043 0.084

SDGVM 23.505 0.118 0.000 20.677 0.075 0.000 −0.984 −0.038 0.030

TRIFFID 29.801 0.141 0.000 28.925 0.096 0.000 −0.876 −0.045 0.218

VEGAS 23.472 0.041 0.061 21.994 0.033 0.004 −0.278 −0.010 0.527

Ensemble 26.609 0.102 0.000 24.492 0.065 0.000 −0.961 −0.036 0.045

SD 4.350 0.034 4.752 0.025 0.428 0.013

Southern_Land

CLM4CN 7.617 0.014 0.187 7.017 0.011 0.036 −0.098 −0.005 0.719

HYLAND 19.875 0.109 0.000 18.623 0.056 0.000 −1.035 −0.051 0.000

LPJ 8.940 0.037 0.074 6.833 0.021 0.004 −0.267 −0.013 0.355

LPJ-GUESS 12.124 0.058 0.003 10.255 0.026 0.001 −0.385 −0.031 0.192

OCN 10.222 0.027 0.165 9.909 0.023 0.053 −0.174 −0.004 0.744

ORCHIDEE 13.884 0.073 0.002 13.304 0.037 0.000 −0.581 −0.036 0.027

SDGVM 12.358 0.059 0.034 10.539 0.050 0.000 −0.317 −0.010 0.701

TRIFFID 13.707 0.077 0.020 13.290 0.045 0.000 −0.417 −0.032 0.269

VEGAS 11.971 0.024 0.382 11.049 0.016 0.140 −0.182 −0.009 0.656

Ensemble 12.300 0.053 0.011 11.202 0.032 0.000 −0.384 −0.021 0.196

SD 3.528 0.031 3.597 0.016 0.285 0.017
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Figure 5. (a) Average land to atmosphere net CO2 flux over the period 1990–2009 for the ensemble mean and model disagreement, with

stippling representing agreement for < 66 % of DGVMs , and (b) standard deviation across DGVMs. (c) The trend in land to atmosphere

net CO2 flux across the ensemble, and model disagreement, with stippling representing agreement of < 66 % of the DGVMs , and (d) the

standard deviation of the trend.

Figure 6. Trends in land climate drivers and process responses. (a) Trend in temperature (◦C yr−1), (b) trend in precipitation

(% yr−1), (c) trend in land to atmosphere net CO2 flux (gC m−2 yr−2), (d) trend in NPP (gC m−2 yr−2), and (e) trend in RH

(=RH+wildfire+Riverine C flux) (gC m−2 yr−2).
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growing season length= 0.361 days yr−1. There is less

agreement among models on reproducing the observed

browning trends in some regions of the boreal forest.

DGVMs simulate an ensemble mean RH of

21.8± 4.6 Pg C yr−1 across the northern land region

(Table 3). All DGVMs simulate an increase in northern RH

over the period 1990–2009, with a significant trend in RH

of 0.063± 0.02 Pg C yr−1 (P < 0.01) (Table 3). DGVMs

simulate larger mean RH in temperate compared to boreal

regions, yet smaller positive trends for Asia (Table S6

in the Supplement). This is because of relatively smaller

increases in substrate (i.e. NPP) in temperate regions and

greater warming in boreal regions stimulating microbial

decomposition, reducing mean residence time of carbon in

soils (MRT= soil carbon / RH; see Fig. S3).

No significant trends in the wildfire flux were reported by

any of the DGVMs for the northern land region. However,

DGVMs agree on simulating a small negative trend in wild-

fire flux across boreal North America and tundra.

Tropical land

All DGVMs simulate an increasing land C sink over

recent decades, in response to changes in climate

and atmospheric CO2 concentration over the tropical

land region, with an ensemble mean land–atmosphere

flux of −0.96± 0.43 Pg C yr−1 (Table 3, Fig. S4)

and trend of −0.04± 0.01 Pg C yr−2 (P = 0.05), or

−0.88± 0.33 g C m−2 yr−2 on an area basis (Table 3,

Table S4 in the Supplement Fig. S5). This represents 65 %

of the increase in global land sink over the last two decades

across the tropical land, which covers 27 % of the land sur-

face (Table S4). DGVMs simulate significant negative trends

(i.e. increasing sinks) across tropical Asia and equatorial

Africa (Table S4).

DGVMs simulate an ensemble mean NPP of

26.6± 4.35 Pg C yr−1 averaged over the tropical re-

gion, representing 42 % of the global total (Table 3). All

DGVMs simulate a significant increase in tropical NPP

over this period, with an ensemble mean trend in NPP of

0.10± 0.03 Pg C yr−2 (P = 0.00) for S_L2 (Table 3). This

compares to a trend of 0.09± 0.03 Pg C yr−2 (P < 0.01) and

0.02± 0.02 Pg C yr−2 (P = 0.33) over the same period for

the S_L1 (CO2 only) and S_L2–S_L1 (the climate effect),

respectively (Tables S2, S3). Again, the simulated trend in

NPP is dominated by the simulated response of ecosystems

to elevated atmospheric CO2 content. DGVMs simulate

positive NPP trends across tropical South American forests,

tropical Asia, equatorial Africa, and North African savanna

(Table S5). Nevertheless there are some areas within tropical

South America and North African savanna regions with

negative trends in NPP (Fig. 6).

All DGVMs simulate an increase in RH over

the period 1990–2009, with an ensemble mean RH

of 24.49± 4.75 Pg C yr−1 (Table 3) and trend of

Figure 7. Ensemble-mean trends in the onset (a, b), offset (c, d),

and length of growing season in days (e, f) for the ensemble mean

(left) compared with satellite-derived estimates (right).

0.065± 0.025 Pg C yr−2 (P < 0.01). This can be largely

attributed to the response of ecosystems to elevated CO2

(Table S2).

No significant trends in the wildfire flux were reported by

any of the DGVMs for the tropical land region. However,

DGVMs agree on simulating a negative trend in wildfire flux

across equatorial Africa and tropical Asia.

Southern land

All DGVMs agree on a net land sink over the southern

land during the last two decades, with an ensemble mean

land–atmosphere flux of −0.38± 0.29 Pg C yr−1 (Table 3,

Fig. S4). Although all DGVMs simulate an increase in the

land sink over the southern extratropics, with an ensem-

ble mean land–atmosphere trend of −0.02± 0.02 Pg C yr−2

(P = 0.20) (Fig. S5) or −0.58± 0.45 g C m−2 yr−2 on an

area basis, only trends for HYL and ORC are significant at

the 95 % confidence level (Table 3). Ensemble mean trends

are significant for temperate South American and south-

ern African regions at 0.005± 0.005 Pg C yr−2 (P = 0.05)

and −0.022± 0.011 Pg C yr−2 (P = 0.01), respectively (Ta-

ble S4). For southern Africa, all DGVMs simulate an in-

crease in the land sink in response to climate variability and

change over this period (five out of nine are significant at the

90 % confidence level) (Table S7 in the Supplement, Fig. 6).

In contrast, the simulated decrease in land sink for temperate

South America is associated with a decrease in precipitation

over 1990–2009 (Table S8 in the Supplement).

DGVMs simulate an ensemble mean NPP of

12.3± 3.53 Pg C yr−1 over the southern extratropics,
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which represents ∼ 20 % of the global total (Table 3)

across 24 % of the land surface. All DGVMs simulate

an increase in NPP over this period, with a significant

ensemble mean trend of 0.05± 0.03 Pg C yr−2 (P = 0.01),

i.e. the southern land region accounts for around 25 % of

the simulated global trend in NPP. Southern Africa is the

only southern sub-region with a significant trend in NPP

of 0.041± 0.018 Pg C yr−2 (P < 0.01) (Table S5), due to

a positive response of plant production to both CO2 and

climate, and is likely in response to increases in precipitation

over the last two decades (Table S7, Fig. 5).

DGVMs simulate an ensemble mean RH of

11.20± 3.60 Pg C yr−1 over the southern land region

(Table 3). All DGVMs simulate an increase in RH over

the period 1990–2009, with a significant trend in the

ensemble mean RH of 0.03± 0.02 Pg C yr−2 (P < 0.01).

This is only partly explained by the response of ecosys-

tems to elevated CO2; over southern Africa the ensemble

mean trend in RH from S_L1 is 0.01± 0.01 Pg C yr−2

(P < 0.01), and a climate-induced positive trend in RH of

0.01± 0.00 Pg C yr−1 (P < 0.01) (Table S2, S7).

No significant trends in the wildfire flux were reported by

any of the DGVMs for the southern land region. However

DGVMs agree on simulating a negative trend in wildfire flux

across southern Africa.

In summary, the globally increasing trend in land carbon

sink is about two-thirds due to tropical ecosystems and one-

third due to the southern land region, with zero contribution

from northern land. This partitioning in trend is quite differ-

ent from the mean carbon sink fluxes themselves, which is

more like 43 : 41 : 16 (northern : tropical : southern).

Qualitative change in processes

A qualitative assessment of the differential responses of

the underlying land processes to changes in environmental

conditions, and their contribution to the sink–source land–

atmosphere flux trends is shown in Fig. 8. Many regions

are simulated to have a negative land–atmosphere flux trend,

with increases in NPP leading increases in RH. However

there are locations with positive trends over the period 1990–

2009, i.e. red colours in Fig. 8. In some regions models sim-

ulate a positive trend in NPP but an even larger positive trend

in RH (eastern Europe, southeastern USA, Amazonia, south-

ern China, North America tundra). Warming is likely to en-

hance both NPP and RH in high-latitude ecosystems, but pri-

marily RH in low latitudes. Reduced precipitation may par-

tially or fully offset the benefits of elevated atmospheric CO2

abundance on NPP, and the response of RH to changes in

precipitation is not obvious, as this is influenced by the ini-

tial soil moisture status. This is because microbial activity

increases with increasing soil moisture at low moisture lev-

els, before reaching a maximum activity, and then begins to

decline as water completely fills the soil pore spaces and oxy-

gen becomes more limiting to respiration. Locations in the

western USA, southern Asia, northern boreal China, south-

eastern South America, and western and southern Australia

are simulated to have negative NPP trends over the last two

decades, as a result of reduced rainfall, and there is a less

negative trend in RH, possibly due to a reduction in micro-

bial respiration rates with increased soil dryness. The warm-

ing and drying in central Asia (northeastern China and Mon-

golia) and southern Australia is simulated to reduce the rate

of microbial decomposition in these regions (Fig. S3), which

partly opposes the NPP-driven lagged decrease in RH. The

source trend in eastern Europe is simulated as a combina-

tion of a negative trend in NPP, as a result of a combination

of elevated temperatures and reduced precipitation (i.e. soil

drying), and a positive trend in RH driven by increasing tem-

perature, despite reduced plant litter input.

.2 Ocean

Regional fluxes

The large-scale distribution of the modelled mean surface

fluxes consists of strong outgassing in the tropical regions,

especially in the Pacific, and broad regions of uptake in the

mid-latitudes, with a few regions in the high latitudes of par-

ticularly high uptake, such as the North Atlantic (Fig. 9). This

pattern is largely the result of the exchange flux of natural

CO2 that balances globally to a near-zero flux, but exhibits

regionally strong variations (Gruber et al., 2009). Superim-

posed on this natural CO2 flux pattern is the uptake of an-

thropogenic CO2, which is taken up everywhere, but with

substantial regional variation. Large anthropogenic CO2 up-

take fluxes occur in the regions of surface ocean divergence,

such as the equatorial Pacific and particularly the Southern

Ocean (Sarmiento et al., 1992; Gloor et al., 2003; Mikaloff

Fletcher et al., 2006). This is a result of the divergence caus-

ing waters to upwell to the surface which have not been ex-

posed to the atmosphere for a while, thereby permitting them

to take up a substantial amount of anthropogenic CO2. This

reduces the outgassing that typically characterises these re-

gions as a result of these upwelling waters also bringing with

them high carbon loads from the remineralisation of organic

matter.

Over the analysis period, the air–sea CO2 fluxes exhibit

only a remarkably small trend in most places, with some re-

gions increasing in uptake, while others show a positive flux

anomaly, i.e. lesser uptake. Thus the small global trend in

ocean uptake over the 1990–2004 analysis period is a result

of also the individual regions having relatively modest trends.

Process analysis

The regional flux trends are, however, much smaller than ex-

pected from an ocean with constant circulation that is only

responding to increasing atmospheric CO2, and hence would

tend to increase its uptake of anthropogenic CO2 through
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Figure 8. Qualitative change in processes over the period 1990–2009. Negative trend in land–atmosphere net CO2 flux: enhanced

NPP > enhanced RH (=RH+wildfire+ riverine C flux) (pale blue); enhanced NPP, reduced RH (turquoise); and reduced NPP < reduced

RH (dark blue). Positive trend in land–atmosphere net CO2 flux: enhanced NPP < enhanced RH (dark red); reduced NPP, enhanced RH (red);

and reduced NPP > reduced RH (pink).

Figure 9. Gridded maps of the ensemble mean sea–air CO2 flux over the period 1990–2004 (a), standard deviation of the mean flux across

the four OBGCMs (b), the trend in the net flux across the ensemble (c), and the standard deviation of the trend (d).
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time (Fig. 10). In the absence of climate variability and

change, all regions would have flux density trends of more

than −0.05 g C m−2 yr−2, with some regions, such as the

Southern Ocean, exceeding −0.15 g C m−2 yr−2. However

climate variability and change compensate for these neg-

ative trends in every single region by increasing them by

+0.04 g C m−2 yr−2 or more (with the exception of the South

Pacific), such that the overall trends fluctuate from region to

region around zero (Fig. 10). The largest reductions in trends

are simulated to occur in the North and equatorial Pacific and

in the North Atlantic, where they even cause a change in the

sign of the overall trend. A similar, although slightly more

moderate, pattern is seen if the analysis is undertaken for the

entire 1990–2009 period with two models only. The most im-

portant difference is found in the North Atlantic, where the

climate variability impact is substantially smaller, and not

offsetting the anthropogenic CO2 trend when analysed for

1990–2009.

The mechanisms driving the oceanic flux trends differ be-

tween the analysed regions. Attribution of regional trends to

specific processes or changes in specific state variables in

the different models is a work in progress, and is difficult

to achieve with high confidence as yet. This is due to the an-

tagonistic effect of ocean warming on CO2 solubility and on

dissociation of carbonic acid into bicarbonate and carbon-

ate, as well as to the complex changes in ocean circulation

and mixing, which themselves influence the biological car-

bon pumps of the ocean.

4 Discussion

4.1 Land

The DGVMs used in this study simulate an increase in

land carbon uptake over the period 1990–2009. The re-

sult is consistent with the earlier findings of Sarmiento et

al. (2010), who suggested a large increase in the RLS be-

tween 1960 and 1988 and between 1989 and 2009 (Table S9

in the Supplement). The ensemble mean land–atmosphere

flux increased by −1.11 Pg C yr−1 for the same period, com-

pared to the estimated RLS increase of−0.88 Pg C yr−1 from

Sarmiento et al. (2010). The DGVM ensemble trends in land

uptake for the globe, northern, tropical, and southern land

regions of −0.06± 0.03, 0.00± 0.01, −0.04± 0.01, and

−0.02± 0.02 Pg C yr−2, respectively, compare favourably

with the inversion estimates of −0.06± 0.04, −0.01± 0.01,

−0.04± 0.02, and −0.01± 0.01 Pg C yr−2 over the period

1990–2009. Although encouraging, these results should be

interpreted with caution because the inversion accounts for

any trend in the land use change flux over this period,

whereas DGVMs had fixed land use.

There is empirical evidence of a large increase in biomass

in intact forest in tropical South America and Africa (Pan et

al., 2011; Baker et al., 2004; Lewis et al., 2009a, b), which

Figure 10. Regional ocean flux trends from 1990 through to 2004

for the standard case, i.e. variable climate and increasing CO2 (sim-

ulation S_O2), and for the constant climate case (simulation S_O1),

and their difference (S_O2–S_O1). Ocean regions comprise North

Pacific (NP), equatorial Pacific (EP), South Pacific (SP), North At-

lantic (NAT), equatorial/South Atlantic (EQ), Indian Ocean (IO),

and Southern Ocean (SO), and world oceans (W).

is consistent with the DGVM projections presented here.

Lewis et al. (2009b) found broad agreement between biomass

trends from observations and from a suite of carbon cycle

models applied with 20th century forcing of climate and at-

mospheric CO2 content, using a similar protocol to the cur-

rent analysis. DGVMs suggest a large component of the up-

take trend is associated with a positive NPP response to ele-

vated CO2, which is broadly consistent with the enhancement

of forest production due to CO2 observed in FACE experi-

ments (Norby et al., 2005), although they are largely located

in temperate forest ecosystems. However, recent studies have

highlighted the role of nitrogen in limiting the long-term CO2

response (Canadell et al., 2007; Norby et al., 2010) in these

ecosystems. The long-term plant response to elevated CO2 is

likely affected by nutrients and its impact on plant C alloca-

tion (Zaehle et al., 2014), however only two out of the nine

models used here (CLM4CN and OCN) include interactive

nutrient cycling (see DGVM characteristics, Table S1).

In contrast to the large trend in net C uptake across the

tropics, DGVMs simulate no statistically significant trend

over the northern land region. In particular, trends in NPP

over temperate regions are smaller than those in boreal re-

gions, and are also not significant. Many temperate areas ex-

perienced a decrease in rainfall between 1990 and 2009, and

suffered periods of prolonged and severe drought. Examples

include the drought in the western USA of 2000–2004 (Mc-

Dowell et al., 2008; Anderreg et al., 2012) and the 2003 sum-

mer heatwave in Europe (Ciais et al., 2005). Zscheischler et

al. (2014) suggest that negative productivity extremes dom-

inated interannual variability in productivity during the pe-

riod 1982–2011; these extremes are evident particularly over

temperate latitudes.

Satellite observations suggest a general greening trend

in high latitudes, with an earlier onset and longer growing

season in high-latitude ecosystems, which is reproduced by

the DGVMs. Observations suggest a greening tundra and a
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slower greening and possible browning in some regions of

the boreal forest (Tucker et al., 2001; Bhatt et al., 2010), es-

pecially in North America (Beck and Goetz, 2011). In tun-

dra ecosystems, an earlier onset is attributed to warming

and earlier snowmelt. In these ecosystems, the start of the

growing season corresponds to near peak in radiation. Thus

any temperature-induced earlier snowmelt (McDonald et al.,

2004; Sitch et al., 2007a) is likely to enhance plant produc-

tion. Warming may not have such a great effect on the end

of the growing season in Arctic tundra ecosystems, as this

may be driven primarily by radiation. DGVMs simulate a

significant positive trend in NPP in boreal North America

and boreal Asia and the circumpolar tundra. Nitrogen limi-

tation is also likely to constrain the productivity at high lati-

tudes, but it was not possible to quantify N-limitation effects

on regional trends in this study.

DGVMs simulate decreasing NPP across northeastern

China and Mongolia, contributing to the overall decreas-

ing land uptake trend, in response to recent climate. In

a regional study, Poulter et al. (2013) investigated the dif-

ferential response of cool semi-arid ecosystems to recent

warming and drying trends across Mongolia and northern

China, using multiple sources of evidence, including the LPJ

DGVM, FPAR remotely sensed data (derived from GIMMS

NDVI3g), and tree-ring widths. They found coherent patterns

of high sensitivity to precipitation across data sources, which

showed some areas with warming-induced springtime green-

ing and drought-induced summertime browning, and limita-

tions to NPP explained mainly by soil moisture.

Browning has occurred as a consequence of regional

drought, wildfire, and insect outbreak, and their interaction,

especially in North America (Beck and Goetz, 2011). Distur-

bance plays a key role in the ecology of many global ecosys-

tems. For example, wildfire plays a dominant role in the car-

bon balance of boreal forest in central Canada and other

regions (Bond-Lamberty et al., 2007), and insect outbreaks

like the mountain pine beetle epidemic between 2000 and

2006 in British Colombia, Canada, resulted in the transition

of forests from a small carbon sink to a source (Kurz et al.,

2008). In general, disturbance and forest management are in-

adequately represented by the current generation of DGVMs,

even though several models include simple prognostic wild-

fire schemes (Table S1), while some are starting to include

other disturbance types such as insect attacks (Jönsson et al.,

2012) and windthrow (Lagergren et al., 2012). The exten-

sion of DGVMs to include representations of globally and

regionally important disturbance types and their response to

changing environmental conditions is a priority.

In Table 4, DGVM results are compared with the REC-

CAP synthesis papers documenting carbon sources and sinks

for individual regions. Note that DGVMs provided one

source of evidence for some regional papers. Over Russia,

DGVMs agree on a sink yet underestimate that sink’s mag-

nitude, likely related to soil respiration (which is unsurpris-

ing, as many DGVMs have a limited representation of per-

mafrost and active layer thickness) (Dolman et al., 2012).

In South America, DGVMs agree with inventory-based es-

timates on a sink in natural forests (Gloor et al., 2012).

DGVMs also agree with other data sources on the sign and

magnitude of the natural land sink over Australia (Harverd

et al., 2013). Over Europe DGVMs simulate a smaller mean

land sink than the synthesis study suggests (Luyssaert et al.,

2012). However, the regional synthesis was conducted over

the shorter time period 2001–2005. For the Arctic, DGVMs

tend to simulate a lower sink than regional process-based

models (McGuire et al., 2012). However, over the 1990–

2006 period, DGVMs are in line with observations and in-

versions on the magnitude and sign of the natural land sink,

and DGVM results also suggest a sink trend in line with ob-

servations. DGVMs simulate a land sink over South Asia in

agreement with inversions; however there were limited data

to compare trends from DGVMs and other products (Patra

et al., 2013). For East Asia, DGVM results agree remark-

ably well with remote sensing model–data fusion and inverse

models on the magnitude of the land sink over the period

1990–2009. Finally, for Africa, DGVMs are broadly consis-

tent with inventory- and flux-based estimates in simulating a

land sink over Africa, albeit of lower magnitude (Valentini et

al., 2014).

4.2 Ocean

The investigated OBGCMs consistently simulate an ocean

characterised by a substantial uptake of CO2 from the at-

mosphere, but with a global integrated trend in the last

two decades (−0.02± 0.01 Pg C yr−2) that is substantially

smaller than that expected based on the increase in at-

mospheric CO2. Results based on the predictions from

ocean inversion and ocean Green function methods (Mikaloff

Fletcher et al., 2006; Gruber et al., 2009; Khatiwala et al.,

2009) suggest an increase in ocean uptake with a trend of

the order of −0.04 Pg C yr−2 over the analysis period (see

also Wanninkhof et al., 2013). These latter methods assume

constant circulation, while our simulations here include the

impact of climate variability and change.

Our analyses reveal that recent climate variability and

change has caused the ocean carbon cycle to take up less

CO2 from the atmosphere than expected on the basis of the

increase in atmospheric CO2, i.e. it reduces the efficiency of

the ocean carbon sink. Globally, we find that this efficiency

reduction is primarily a result of ocean warming, while, re-

gionally, many more processes (e.g. wind changes, alkalin-

ity/DIC concentration changes) are at play.

Is this reduction in uptake efficiency over the analy-

sis period the first sign of a positive feedback between

global warming and the ocean carbon cycle – or, alterna-

tively, could it just reflect natural decadal-scale variability

in air–sea CO2 fluxes? Without a formal attribution study,

it is not possible to provide a firm answer. We suspect

that the majority of the trend in the efficiency is due to
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Table 4. Ensemble DGVM regional NBP mean comparison with RECCAP regional chapter analyses.

Region DGVM mean Region Inventory-based Flux-based Inversion Best estimate

NBP (TgC yr−1) processed-based

models

Russia −199 −761 −709 −653

South America (forest) −472± 211 −570± 170 (1990–94)

−530± 140 (1995–99)

−450± 250 (2000–04)

−150± 230 (2005–09)

Africa −410± 310 −740± 1190 −1340± 1320 50± 280

(LULCC 510± 280)

Australia & New Zealand −70± 78 −36± 29

(LULCC 18± 7)

Europe −179± 92 −891± 155

(2001–05)

Arctic (1990–2006) −86 −177 −96

South Asia −210± 164 −35.4 (1997–06)

−317 to −88.3 (2007–08)

East Asia −224± 141 −293± 33 combined 270± 507

inventory–EO-flux approach

“natural” decadal-scale variability; however, largely based

on the results of McKinley et al. (2011) and Fay and McKin-

ley (2013), who showed that whereas trends in oceanic pCO2

(and air–sea CO2 fluxes) are variable on a decadal timescale,

they do converge towards atmospheric pCO2 trends when

analysed over a longer 30-year period for most global re-

gions. Nevertheless, they also show that warming (partly

driven by anthropogenic climate change) in the permanently

stratified subtropical gyre of the North Atlantic has started to

reduce ocean uptake in recent years. In the Southern Ocean,

where Le Quéré et al. (2007) and Lovenduski et al. (2008)

used models to suggest a reduction in ocean carbon uptake

efficiency over the past 25 years in response to increasing

Southern Ocean winds, Fay and McKinley (2013) concluded

that the data are insufficient to draw any conclusions.

We should note that the associated uncertainties remain

large. Of particular concern is the moderate success of the

models in simulating the time-mean ocean sinks and their

long-term seasonal cycle (e.g. McKinley et al., 2006). Fur-

thermore, some of the models underestimate the oceanic up-

take of transient tracers such as anthropogenic radiocarbon

(see e.g. Graven et al., 2012). Such a reduction in the oceanic

uptake efficiency is also not suggested by independent mea-

sures of oceanic CO2 uptake, such as the atmospheric O2 / N2

method (Manning and Keeling, 2006; Ishidoya et al., 2012),

although the large uncertainties in these estimates make the

determination of trends in uptake highly uncertain.

All the models have been tuned to reproduce data syn-

thesis on ocean surface pCO2 (Pfeil et al., 2013; Takahashi

et al., 2009) and deep ocean (Key et al., 2004) reasonably

well. Specific systematic data assimilation procedures, how-

ever, have not been applied. On decadal timescales, the ocean

CO2 flux feedback to climate change (change in hydrogra-

phy and circulation) and rising ambient CO2 (change in CO2

buffering) reacts only slowly on the global average due to the

long timescales of oceanic motion and marine CO2 equilibra-

tion with the atmosphere. Changes in biogeochemical and

ecosystem processes, such as locally varying gas exchange

velocities, phytoplankton blooms, and associated particle

flux pulses, can lead to regional interannual variations in air–

sea CO2 fluxes, but may partially cancel for averages over

larger regions. With ocean observations only over about a

two-decade time frame, it is difficult to quantify longer-term

trends due to other proposed mechanisms: a gradual slowing-

down of meridional overturning circulation due to a strength-

ening of density stratification; redissolution of CaCO3 sedi-

ment from the seafloor associated with fossil fuel neutraliza-

tion; and potential changes in biogenic particle fluxes due to

carbon overconsumption and changing ballasting (cf. Keller

et al., 2014). Whether more complex models will render bet-

ter results will depend on how well the additional free pa-

rameters in more complex biogeochemical models can be

constrained by measurements. So far, more complex – and

hence potentially more realistic – models do not necessarily

give better results than the present nutrient-phytoplankton-

zooplankton-detritus (NPZD)-type models models as applied

here (Le Quéré et al., 2005; Kriest et al., 2010).

4.3 Reducing uncertainty in regional sinks

In order to better quantify the regional carbon cycle and its

trends, DGVM and ocean carbon cycle models need to im-

prove both process representations and model evaluation and

benchmarking (Luo et al., 2012). There is a need for up-

to-date global climate and land use and cover change data

sets to force the DGVMs, as well as a deeper investigation

of the quality and differences between the different reanaly-

sis products used to force ocean carbon cycle models. Also,

techniques such as detection and attribution can be applied to

elucidate trends in the regional carbon cycle and their drivers.
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4.3.1 Model evaluation and benchmarking

Piao et al. (2013) evaluated the DGVM model results for

their response to climate variability and to CO2 trends, and

the seasonal cycle of CO2 fluxes were benchmarked in Peng

et al. (2014). Piao et al. (2013) found DGVMs to simulate

higher mean and interannual variations (IAVs) in gross pri-

mary production than a data-driven model (Jung et al., 2011),

particularly in the tropics; however, this is the region where

the data-driven model is most uncertain. DGVMs were able

to capture the IAVs in RLS, although the simulated land–

atmosphere net CO2 flux appears too sensitive to variations in

precipitation in tropical forests and savannas. However, Poul-

ter et al. (2014) found an increase in the sensitivity of the net

flux to precipitation over the last three decades across conti-

nental Australia. Piao et al. (2013) found that the simulated

net CO2 flux was more sensitive than productivity to tem-

perature variations. When compared to ecosystem warming

experiments the DGVMs tend to underpredict the response

of NPP to temperature at temperate sites. DGVMs simulated

an ensemble mean NPP enhancement comparable to FACE

experiment observations (Piao et al., 2013). However, mod-

elling of ecosystem function in water-stressed environments

and changes in plant water use with elevated CO2 remains a

challenge for DGVMs (Morales et al., 2005; Keenan et al.,

2009; De Kauwe et al., 2013).

There is a critical need for comprehensive model bench-

marking, as a first step to attempt to reduce model un-

certainty. Several prototype carbon cycle benchmarking

schemes have been developed (Randerson et al., 2009; Cad-

ule et al., 2010). A more in-depth evaluation and community

benchmarking set needs to be agreed upon and implemented

which also evaluates models for their implicit land response

timescales (especially relevant in the discussion on future tip-

ping elements and non-linear future responses) and for the

simulated carbon, water, and nutrient cycles. New emerging

frameworks now exist (Blyth et al., 2011; Abramowitz, 2012;

Luo et al., 2012; Dalmonech and Zaehle, 2013; Harverd

et al., 2013). One example within RECAPP is a multiple-

constraint approach applied to reduce uncertainty in land car-

bon and water cycles over Australia (Haverd et al., 2013).

4.3.2 Model resolution

Simulated ocean carbon dynamics may be sensitive to

horizontal resolution, particularly as model resolution im-

proves sufficiently to adequately capture mesoscale eddies.

Mesoscale turbulence influences the ocean carbon cycle in

a variety of ways, and the present eddy parameterisations

may not adequately capture the full range of effects and

the responses to climate variability and change. For exam-

ple, mesoscale processes are thought to modulate biologi-

cal productivity by altering the supply of limiting nutrients

(Falkowski et al., 1991; McGillicuddy et al., 1998; Gruber

et al., 2011). A particularly crucial issue involves the wind-

driven overturning circulation in the Southern Ocean, where

non-eddy-resolving models indicate a strong sensitivity of

the overturning circulation and ocean carbon uptake to sur-

face wind stress (Le Quéré et al., 2007; Lovenduski et al.,

2008). Some eddy-resolving models, in contrast, suggest that

enhanced wind stress is dissipated by increased eddy activ-

ity, leading to only a small increase in overturning (Böning,

et al., 2008), although more recent results indicate a larger

response (Gent and Danabasoglu, 2011; Matear et al., 2013).

4.3.3 Model structure

There is a need for improved representation of ecological

processes in land and ocean models, e.g. nutrient cycling

(N, P), demographic dynamics, disturbance (wildfire, wind-

throw, insects), land use and land cover change in land mod-

els, and better representation of the key functional diversity

in ocean and land biogeochemical models. DGVMs need to

represent land use and land cover changes, forest manage-

ment, and forest age in order to improve estimates of the

regional and global land carbon budget. There have been

recent developments to include nutrient dynamics, mostly

nitrogen, in global land biosphere models (as reviewed by

Zaehle and Dalmonech, 2011). Too few model simulations

are available to date to allow for an ensemble model trend

assessment. However, a few general trends appear robust:

as evident from Table 3, CN models generally show less

of a response to increasing atmospheric CO2 due to nitro-

gen limitation of plant production. N dynamics further al-

ter the climate–carbon relationship, which tend to reduce the

C loss from temperate and boreal terrestrial ecosystems due

to warming – but with a considerable degree of uncertainty

(Thornton et al., 2009; Sokolov et al., 2008; Zaehle et al.,

2010). Changes in the nitrogen cycle due to anthropogenic

reactive nitrogen additions (both fertiliser to croplands and

N deposition on forests and natural grasslands) further mod-

ify the terrestrial net C balance and contribute with −0.2

to −0.5 Pg C yr−1 to the current land sink (Zaehle and Dal-

monech, 2011). Zaehle et al. (2011), using the OCN model,

estimated the 1995–2005 trend in land uptake due to N de-

position to be−1.1± 1.7 Tg C yr−2, with strong regional dif-

ferences depending on the regional trends in air pollution and

reactive N loading of the atmosphere and the nitrogen status

of the ecosystems, which are generally lower in less respon-

sive ecosystems close to nitrogen saturation highly polluted

regions. The DGVMs applied here do not consider the P cy-

cle; P limitation on land carbon uptake may be particularly

important in tropical forests and savannas (Edwards et al.,

2005; Wang et al., 2010; Zhang et al., 2014).

There are several additional land processes that have not

been considered in this current multi-model analysis. These

include the effects of aerosols and tropospheric ozone on the

carbon cycle. Unlike a global forcing agent such as CO2,

the effects of air pollutants (aerosols, NOx, and O3), with

their shorter atmospheric lifetimes, are at the regional scale.
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Aerosol-induced changes in radiation quantity and quality

(i.e. the ratio of diffuse to direct) affect plant productivity and

the land sink (Mercado et al., 2009). From around 1960 until

the 1980s, radiation levels declined across industrialised re-

gions, a phenomenon called “global dimming”, followed by

a recent brightening in Europe and North America with the

adoption of air pollution legislation. Reductions in acid rain

have been found to greatly influence trends in riverine DOC,

vegetation health, and rates of soil organic matter decompo-

sition. Tropospheric ozone is known to be toxic to plants and

lead to reductions in plant productivity, and thus reduce the

efficiency of the land carbon sink (Sitch et al., 2007b; Anav et

al., 2011). Drivers of the land carbon sink related to air pollu-

tion – e.g. N deposition, acid precipitation, diffuse and direct

radiation, and surface O3 – have varied markedly in space

and time over recent decades. Although likely important for

regional carbon cycle trends, quantifying these effects is be-

yond the scope of the present study.

The Pinatubo eruption in 1991, at the start of the study pe-

riod, had a major influence on many carbon cycle processes,

leading to an enhanced land sink over the period 1991–1993.

This has been attributed to a combination of cooling-induced

reductions in high-latitude respiration and enhanced produc-

tivity associated with changes in diffuse radiation (Jones and

Cox, 2001; Lucht et al., 2002; Peylin et al., 2005; Mercado et

al., 2009; Frölicher et al., 2013). The direct effect of aerosols

on climate drivers is implicitly included in this study (i.e. re-

sponses to high-latitude cooling, tropical drying, reduced net

incoming solar radiation); however diffuse radiation effects

are not included.

Similar gaps need to be addressed in ocean biogeochemi-

cal models. The ecosystem modules in the current generation

of OBGCMs lack the ability to assess many of the suggested

mechanisms by which climate and ocean acidification could

alter marine biogeochemistry and ocean carbon storage. Pro-

posed biological processes that could influence ocean car-

bon uptake and release involve, for example, decoupling of

carbon and macronutrient cycling, changes in micronutrient

limitation, variations in elemental stoichiometry in organic

matter, and changes in the vertical depth scale for the res-

piration of sinking organic carbon particles (e.g. Boyd and

Doney, 2003; Sarmiento and Gruber, 2006). Some advances

have been made with the incorporation of dynamic iron cy-

cling and iron limitation, multiple plankton groups, calcifi-

cation, and nitrogen fixation (Le Quéré et al., 2005). How-

ever, the evaluation of these aspects of the models is cur-

rently hindered by both data- and process-level information

limitations.

4.3.4 Climate and land use and cover data sets

In addition to model structure, the choice of climate forc-

ing and model initial conditions can also contribute to dif-

ferences in the simulated terrestrial carbon sink. At regional

scales, differences in land cover can introduce ∼ 10 % un-

certainty in simulated regional-scale GPP (Jung et al., 2007;

Quaife et al., 2008) and ∼ 3.5 % uncertainty for global NPP.

Climate forcing uncertainty tends to have larger effects on

carbon flux uncertainty than land cover (Hicke, 2005; Poul-

ter et al., 2011), with up to 25 % differences in GPP reported

over Europe (Jung et al., 2007) and a 10 % difference for

global NPP (Poulter et al., 2011). Climate forcing uncertainty

and land cover (i.e. PFT distributions) can alter long-term

trends in land to atmosphere net CO2 flux and interannual

variability of carbon fluxes to climate (Poulter et al., 2011).

The DGVMs applied here did not consider LULCC. This

is an active area of research; models need a consistent im-

plementation of LULCC. Uncertainties in the simulated net

land use flux are associated with assumptions on the imple-

mentation of LULCC gridded maps (e.g. whether conversion

to cropland in a grid-cell is taken preferentially from grass-

land, forest, or both), simulated biomass estimates, and sub-

sequent decomposition rates. However DGVMs offer the ex-

citing prospect of disentangling the component fluxes asso-

ciated with land use (e.g. direct emissions and legacy fluxes)

and separating the environmental and direct human impacts

on the net LU flux (Gasser and Ciais, 2013; Pongratz et al.,

2014; Stocker et al., 2014).

5 Conclusions

Land models suggest an increase in the global land net C

uptake over the period 1990–2009, with increases in trop-

ical and southern regions and negligible increase in north-

ern regions. The increased sink is mainly driven by trends in

NPP, in response to increasing atmospheric CO2 concentra-

tion, and modulated by change in climate. Over the same pe-

riod, ocean models suggest a negligible increase in net ocean

C uptake – a result of ocean warming counteracting the ex-

pected increase in ocean uptake driven by the increase in at-

mospheric CO2. At the sub-regional level, trends vary both in

sign and magnitude, particularly over land. Areas in temper-

ate North America, eastern Europe, and northeastern China

show a decreasing regional land sink trend, due to regional

drying, suggesting a possibility for a transition to a net car-

bon source in the future if drying continues or droughts be-

come more severe and/or frequent. In the ocean, the trends

tend to be more homogeneous, but the underlying dynamics

differ greatly, ranging from ocean warming, to winds, and to

changes in circulation/mixing and ocean productivity, mak-

ing simple extrapolations into the future difficult.

Our conclusions need to be viewed with several important

caveats: only a few models include a fully coupled carbon–

nitrogen cycle, and no model included land use and land

cover changes. Ocean models tend to be too coarse in reso-

lution to properly represent important scales of motions and

mixing, such as eddies and other mesoscale processes, and

coastal boundary processes. Furthermore, their representa-

tion of ocean ecosystem processes and their sensitivity to
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climate change and other stressors (e.g. ocean acidification,

deoxygenation, etc.; Gruber, 2011; Boyd, 2011) is rather

simplistic.

There is a need for detailed model evaluation and bench-

marking in order to reduce the uncertainty in the sinks in

the land and ocean and, particularly, in how these sinks have

changed in the past and how they may change in the fu-

ture. For land ecosystems, a concerted effort is needed in the

DGVM community to incorporate nutrient cycling as well as

land use and land cover change. For the oceans, models need

to improve their representation of unresolved physical trans-

port and mixing processes, and ecosystem models need to

evolve to better characterise their response to global change.

The Supplement related to this article is available online

at doi:10.5194/bg-12-653-2015-supplement.
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