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Abstract. In this paper we explore the skill of hyperspectral

reflectance measurements and vegetation indices (VIs) de-

rived from these in estimating carbon dioxide (CO2) fluxes

of grasslands. Hyperspectral reflectance data, CO2 fluxes

and biophysical parameters were measured at three grassland

sites located in European mountain regions using standard-

ized protocols. The relationships between CO2 fluxes, eco-

physiological variables, traditional VIs and VIs derived using

all two-band combinations of wavelengths available from the

whole hyperspectral data space were analysed. We found that

VIs derived from hyperspectral data generally explained a

large fraction of the variability in the investigated dependent

variables but differed in their ability to estimate midday and

daily average CO2 fluxes and various derived ecophysiologi-

cal parameters. Relationships between VIs and CO2 fluxes

and ecophysiological parameters were site-specific, likely

due to differences in soils, vegetation parameters and envi-

ronmental conditions. Chlorophyll and water-content-related

VIs explained the largest fraction of variability in most of

the dependent variables. Band selection based on a combi-

nation of a genetic algorithm with random forests (GA–rF)

confirmed that it is difficult to select a universal band re-

gion suitable across the investigated ecosystems. Our find-

ings have major implications for upscaling terrestrial CO2

fluxes to larger regions and for remote- and proximal-sensing

sampling and analysis strategies and call for more cross-site

synthesis studies linking ground-based spectral reflectance

with ecosystem-scale CO2 fluxes.

1 Introduction

Understanding the mechanisms that drive the carbon diox-

ide (CO2) exchange of terrestrial ecosystems is one of the

main challenges for ecologists working on climate change

(Beer et al., 2010). Plant gross photosynthesis, also referred

to as gross primary productivity (GPP), is one of the major

components of the global carbon cycle. It interacts in com-

plex ways with environmental factors such as radiation, nu-

trients, soil moisture, vapour pressure deficit, air temperature

and soil temperature (Drolet et al., 2005). Plant biochemistry

and structure determine many fundamental ecosystem pat-

terns, processes and dynamics (Lambers et al., 1998; Waring

and Running, 1998). The canopy nitrogen content regulates

the canopy photosynthetic capacity and the canopy light use

efficiency (ε) (Ollinger et al., 2008). In addition, the canopy

chlorophyll content plays an important role in controlling

ecosystem photosynthesis and carbon gain (Peng et al., 2011;

Gitelson et al., 2006).

Optical remote sensing can help ecologists in qualitatively

and quantitatively assessing plant and canopy properties (e.g.

biomass – Vescovo et al., 2012; water content – Clevers et al.,

2010; nitrogen content – Ollinger et al., 2008, Knyazikhin
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et al., 2012; chlorophylls – Gitelson et al., 2006; and pho-

tosynthetic rate – Inoue et al., 2008) that drive ecosystem

processes related to the carbon cycle.

Empirically and physically based methods have been pro-

posed by several authors to interpret optical plant and canopy

properties. Empirical methods consist of, for example, lin-

ear regression analysis between plant or canopy properties

and optical data. The most widely used empirical methods

are hyperspectral index methods (Peñuelas et al., 1993; Sims

and Gamon, 2002; Inoue et al., 2008) and multivariable sta-

tistical methods, e.g. stepwise linear regression, genetic al-

gorithm and neural network (Grossman et al., 1996; Riaño

et al., 2005a; Li et al., 2007). Physical methods are based

on the use of radiative transfer models (RTMs) to simu-

late light absorption and scattering through the canopy as a

function of canopy structure and leaf biochemical compo-

sition (Jacquemoud et al., 2000; Zarco-Tejada et al., 2003).

Therefore, RTMs help in quantifying the contribution of

canopy biophysical and biochemical variables to canopy re-

flectance. Such models can be used for identifying regions

of the light spectrum that are of particular importance for

specific biophysical properties of vegetation. For example,

it was demonstrated that the red-edge region (between 680

to 730 nm) of the spectrum is sensitive to the leaf chloro-

phyll content and leaf area index (LAI) (Baret et al., 1992).

It is also well-accepted that an increase in LAI includes a

decrease in reflectance in the red and an increase in the near-

infrared (NIR) region (Jacquemoud, 1993). In the NIR re-

gion, effects of LAI and the leaf angle distribution equally

contribute to the reflectance response (Bacour et al., 2002a).

NIR reflectance between 800 and 850 nm is also related to

canopy N content (Ollinger et al., 2008; Knyazikhin et al.,

2012). In addition, the combination of the reflectance in NIR

and in the short-wave infrared region (SWIR) is correlated

with canopy water content (Colombo et al., 2008), but the

reflectance between 1000 and 1400 nm is also highly sensi-

tive to LAI. Therefore, some attention is needed when these

spectral regions are used to retrieve water content, consid-

ering that the canopy properties in a given ecosystem often

covary (Bacour et al., 2002b).

The drawback of such an approach consists in the fact

that the process of building a model implies approximations

and assumptions. For this reason we opted for a purely data-

based approach such as the hyperspectral index approach.

This method consists of the use of spectral vegetation indices

(VIs) defined as spectral band ratios or normalized band ra-

tios between the reflectance in the visible (VIS)-vs.-NIR,

VIS-vs.-VIS or NIR-vs.-NIR region.

The typical optical sampling approach, which consists of

linking spectral observations with CO2 fluxes, is based on the

Monteith (1972, 1977) equation:

GPP= ε×PAR× fAPAR, (1)

where ε is the light use efficiency and fAPAR is the fraction

of absorbed photosynthetically active radiation); both ε and

fAPAR can be retrieved by remote optical observations. A

large number of VIs that can potentially be used to model

the productivity of terrestrial ecosystems (as a proxy of ε

and fAPAR) have been suggested (Inoue et al., 2008; Coops

et al., 2010; Peñuelas et al., 2011; Rossini et al., 2012). The

various VIs differ in their sensitivity to changes in photo-

synthetic status. “Greenness indices” – such the widely used

normalized difference vegetation index (NDVI) – have been

demonstrated to be a good proxy for fAPAR but are not sen-

sitive to rapid changes in plant photosynthesis which are in-

duced by common environmental and anthropogenic stres-

sors (Gitelson et al., 2008; Hmimina et al., 2014; Soudani et

al., 2014). However, in ecosystems characterized by strong

dynamics (e.g. grasslands and crops with a strong green-

up and senescence), other VIs are able to effectively mon-

itor seasonal changes in biophysical parameters controlling

canopy photosynthesis, such as fAPAR and chlorophyll con-

tent, and, consequently, can be adopted to monitor the sea-

sonal and spatial variability of carbon fluxes (Gitelson et al.,

2012; Sakowska et al., 2014). Short-term changes in ε can

be remotely detected through a spectral proxy of the xantho-

phyll cycle (photochemical reflectance index, PRI; Gamon

et al., 1992). The PRI is one of the most promising VIs for

a direct estimation of photosynthetic light use efficiency and

of its seasonal and diurnal variations (Nichol et al., 2002).

Latest developments in the sun-induced fluorescence method

may allow even more direct remote sensing of plant photo-

synthesis in the near future (Meroni et al., 2009; Rossini et

al., 2010; Frankenberg et al., 2011). On the canopy scale,

the relationship between PRI and ε was shown to be site-

dependent (Garbulsky et al., 2011; Goerner et al., 2011) and

strongly affected by environmental conditions (Soudani et

al., 2014).

Whereas previous studies have demonstrated the ability of

remote-sensing data to allow modelling ecosystem GPP on

the ecosystem scale (e.g. Gianelle et al., 2009; Wohlfahrt et

al., 2010; Rossini et al., 2012; Sakowska et al., 2014), a uni-

versal model for GPP estimation applicable across different

ecosystems and a wide range of environmental conditions is

still missing. Previous studies often focussed on single sites

with specific characteristics (e.g. climate, vegetation com-

position, soil type; see Wohlfahrt et al., 2010). In addition,

different studies often used different sensors, platforms and

protocols (Balzarolo et al., 2011), making generalization dif-

ficult. Moreover, most of the studies have either relied on

reflectance measurements in a few spectral wavebands (e.g.

Wohlfahrt et al., 2010; Sakowska et al., 2014), missing po-

tentially important information in under-sampled spectral re-

gions. In order to overcome such heterogeneity in spectrom-

etry measurements, SpecNet (http://specnet.info; Gamon et

al., 2006), the European COST Action ES0903 (COST –

Cooperation in Science and Technology; EUROSPEC; http:

//cost-es0903.fem-environment.eu/) and the COST Action

ES1309 (OPTIMISE; http://www.cost.eu/domains_actions/

essem/Actions/ES1309) focused on the definition of a stan-

Biogeosciences, 12, 3089–3108, 2015 www.biogeosciences.net/12/3089/2015/

http://specnet.info
http://cost-es0903.fem-environment.eu/
http://cost-es0903.fem-environment.eu/
http://www.cost.eu/domains_actions/essem/Actions/ES1309
http://www.cost.eu/domains_actions/essem/Actions/ES1309


M. Balzarolo et al.: On the relationship between ecosystem-scale hyperspectral reflectance 3091

Table 1. Description of the study sites and period.

Site characteristics Amplero Neustift Monte Bondone

Latitude 41.9041 47.1162 46.0296

Longitude 13.6052 11.3204 11.0829

Elevation (m) 884 970 1550

Mean annual temperature (◦C) 10.0 6.5 5.5

Mean annual precipitation (mm) 1365 852 1189

Vegetation type Seslerietum Pastinaco– Nardetum

apenninae Arrhenatheretum Alpigenum

Study period∗ 111–170, 2006 (9) 122–303, 2006 (16) 129–201, 2005 (13)

124–192, 2006 (12)

∗ Range refers to days of the year (DOY); this is followed by the year; the number of hyperspectral measurement dates is given in

brackets.

dardized protocol for making optical measurements at the

eddy covariance CO2 flux towers (Gamon et al., 2010).

The overarching objective of the present paper is thus to

develop a common framework for predicting grassland car-

bon fluxes and ecophysiological parameters based on optical

remote-sensing data across measurement sites exposed to di-

verse natural (climate) and anthropogenic (management) fac-

tors. To this end we combine eddy covariance CO2 flux mea-

surements with ground-based hyperspectral reflectance mea-

surements for six different grasslands in Europe. In order to

make the optical and fluxes measurements comparable, these

were acquired at the six sites following a common protocol

resulting in a unique standardized data set. We focused on

European grasslands, which cover roughly 22 % (80 million

ha) of the EU-25 land area and are thus among the dominat-

ing ecosystem types in Europe (EEA, 2005). Accordingly,

their role in the European carbon balance has received a lot

of scientific interest (Soussana et al., 2007; Gilmanov et al.,

2007; Wohlfahrt et al., 2008; Ciais et al., 2010). Direct mea-

surements of the grassland carbon exchange have been car-

ried out and are still ongoing at a number of different grass-

land sites in Europe (e.g. Soussana et al., 2007; Cernusca

et al., 2008). Scaling up these plot-level measurements to

the continental scale requires a modelling approach typically

based on or supported by remotely sensed data. Therefore,

we believe that this study will improve the current knowledge

on modelling the carbon dynamics of European grasslands.

2 Materials and methods

2.1 Experimental site description

This study was carried out at six experimental mountain

grassland sites in Europe covering different climatic and

grassland management conditions existing in the mountain

regions of Europe, which were already part of the preceding

study by Vescovo et al. (2012). This data set combined in

situ hyperspectral, biophysical and flux measurements based

on common protocol (for more details, see Sects. 2.2, 2.3

and 2.4). This data set is unique since no common protocol

for hyperspectral measurements exists in the various eddy

covariance networks (e.g. FLUXNET). In this study, three

of these sites (Amplero, Neustift and Monte Bondone, see

Tables 1 and S1 in the Supplement) composed the main data

set used in the analysis, while the other three sites (Table S2)

were used to independently validate the models obtained

with the main data set.

Main study sites (Tables 1 and S1):

2.1.1 Amplero

The Amplero site is situated in the Mediterranean Apen-

nine mountain region of Italy (41.90409◦ N, 13.60516◦ E) at

884 m a.s.l. This site is characterized by mild, rainy winters

and by an intense drought in summer. Amplero is managed

as a hay meadow, with one cut in late June and extensive

grazing during summer and autumn (Balzarolo, 2008).

2.1.2 Monte Bondone

The Monte Bondone site is situated in the Italian Alps

(46.01468◦ N, 11.04583◦ E) at 1550 m a.s.l. This site is char-

acterized by a typical subcontinental climate, with mild sum-

mers and precipitation peaks in spring and autumn. Monte

Bondone is managed as an extensive meadow, with one cut

in mid-July.

2.1.3 Neustift

The Neustift grassland site is located in the Austrian Alps

(47.11620◦ N, 11.32034◦ E) at 970 m a.s.l. The climate of

this area is continental and Alpine, with precipitation peaks

during the summer (July). This site is intensively managed as

a hay meadow, with three cuts in mid-June, at the beginning

of August and at the end of September.
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Validation sites:

2.1.4 Längenfeld

The site Längenfeld is located in the Austrian Alps

(47.0612◦ N, 10.9634◦ E) at 1180 m a.s.l. The climate of this

area is continental/Alpine; however, compared to the other

Alpine sites in this study, the site receives comparably less

precipitation due to rain shadowing effects from both the

north and south. The site is intensively managed as a hay

meadow, with three cuts in mid-June, mid-August and mid-

October.

2.1.5 Leutasch

The site Leutasch is located in the Austrian Alps

(47.3780◦ N, 11.1627◦ E) at 1115 m a.s.l. The climate of this

area is Alpine, with substantial precipitation due to its posi-

tion on the north range of the Alps. The site is extensively

managed as a hay meadow, with two cuts at the end of June

and beginning of September.

2.1.6 Scharnitz

The site Scharnitz is located very close to Leutasch

(47.3873◦ N, 11.2479◦ E) at 964 m a.s.l., and the climate is

thus very similar to Leutasch. The site is extensively man-

aged as a hay meadow, with two cuts at the beginning of July

and beginning of September.

2.2 Hyperspectral reflectance measurements

The canopy hyperspectral reflectance measurements were

collected at each site under clear-sky conditions close to solar

noon (between 11:00 to 14:00 Central European Time) using

the same model of a portable spectroradiometer (ASD Field-

Spec HandHeld, Inc., Boulder, CO, USA) at all sites. The

spectroradiometer acquires reflectance values between 350

and 1075 nm, with a full-width half maximum (FWHM) of

3.5 nm and a spectral resolution of 1 nm. In order to achieve

a better match between the eddy covariance flux footprint and

optical measurements, a cosine diffuser foreoptic (ASD Re-

mote Cosine Receptor, Inc., Boulder, CO, USA), calibrated

by the manufacturer, was used for nadir and zenith measure-

ments (Gianelle et al., 2009; Fava et al., 2009; Meroni et

al., 2011). The ASD’s cosine receptor is designed with a ge-

ometry and material that provides a hemispherical field of

view (FOV) of 180◦ and optimizes the cosine response. To

reduce the nadir FOV contamination (i.e. sky irradiance and

canopy irradiance) due to the hemispherical view of the sen-

sor the instrument was placed on a 1.5 m long horizontal arm

at a height of 1.5 m above the ground. To avoid the zenithal

FOV contamination, the measurements were taken at least

at a 15 m distance from the eddy covariance tower (maxi-

mum height of the tower was 6 m). The vegetation irradiance

(sensor-pointing nadir) and sky irradiance (sensor-pointing

zenith) were measured by rotating the spectroradiometer al-

ternately to acquire spectra from the vegetation and from the

sky. Hemispherical reflectance was derived as the ratio of re-

flected to incident radiance. Each reflectance spectrum was

automatically calculated and stored by the spectroradiometer

as an average of 20 readings. Before starting each spectral

sampling, a dark current measurement was done. For more

details on the experimental set-up, see Vescovo et al. (2012).

Spectral measurements were collected from spring until the

cutting date at Amplero and Monte Bondone, while at the site

in Neustift, which is cut three times during the season, spec-

tral measurements were taken about once per week through-

out the growing season of 2006.

2.3 Biophysical and biochemical canopy properties

Samples for dry phytomass, nitrogen and water content mea-

surements were collected at the time of the hyperspectral

measurements in the field of view of the hyperspectral sen-

sor (see Vescovo et al., 2012 for more details). A similar data

set was collected in 2013 at Monte Bondone by combining

hyperspectral data with chlorophyll measurements. Chloro-

phyll samples were collected in the field of view of the hy-

perspectral sensor and chlorophyll content was detected by

UV–VI spectroscopy. First, the samples were ground with

liquid nitrogen and then immersed in 80 % acetone solu-

tion (0.1 g per 10 mL), shaken for 10 min in an automatic

shaker at 250 rpm (Universal Table Shaker 709) and cen-

trifuged at 4000 rpm for 10 min (Eppendorf 5810 R) in order

to remove particles from the solution. The absorbance of ex-

tracted solutions was measured at 470, 646.8 and 663.2 nm

by a UV–VIS spectrophotometer (Shimadzu UV-1601), and

the concentrations of chlorophyll a (Ca), chlorophyll b (Cb)

and carotenoids (Cx+c) were calculated as proposed by

Lichtenthaler (1987). The weight of sampled sediment was

used to calculate pigment concentrations per unit leaf mass

(mg g−1), and the weight of green biomass per ground area

was used to obtain the total chlorophyll content (mg m−2).

2.4 CO2 flux measurements

Continuous measurements of the net ecosystem CO2 ex-

change (NEE) were made by the eddy covariance (EC) tech-

nique (Baldocchi et al., 1996; Aubinet et at., 2012) at the

six study sites using identical instrumentation. The three

wind components and the speed of sound were measured us-

ing ultrasonic anemometers, and CO2 molar densities were

measured using open-path infrared gas analysers (IRGAs),

as detailed in Tables S1 and S2. Raw data were acquired

at 20 Hz and averaged over 30 min time windows in post-

processing. Turbulent fluxes were obtained from raw data by

applying block averaging (Monte Bondone, Neustift, valida-

tion sites) or linear de-trending (Amplero) methods with a

time window of 30 min. A 3-D coordinate correction was per-

formed according to Wilczak et al. (2001). The CO2 fluxes
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were corrected for, the effect of air density fluctuations as

proposed by Webb et al. (1980). Low- and high-pass filter-

ing was corrected for following Aubinet et al. (2000) (Am-

plero, Monte Bondone) or Moore (1986) (Neustift, valida-

tion sites). Data gaps due to sensors malfunctioning or vi-

olation of the assumptions underlying the EC method were

removed and filled using the gap-filling and flux-partitioning

techniques as proposed in Wohlfahrt et al. (2008). Ecosys-

tem respiration (Reco) was calculated from the y intercept of

the light response model (see Eq. 4). Gross primary produc-

tivity (GPP) was calculated as the difference between NEE

and Reco. Half-hourly NEE and GPP values were averaged

between 11:00 to 14:00 solar local time (at the time window

of optical measurements) to allow for direct comparison with

the hyperspectral data, and daily sums were also computed.

At each site the following supporting environmental mea-

surements were acquired: photosynthetically active radiation

(PAR; quantum sensors), air temperature (Ta; PT100, ther-

mistor and thermoelement sensors) and humidity (RH; ca-

pacitance sensors) at some reference height above the canopy

and soil temperature (Ts; PT100, thermistor and thermoele-

ment sensors) and volumetric water content (SWC; dielectric

and time-domain reflectometry sensors) in the main rooting

zone. In this study we used CO2 flux and meteorological data

of the years 2005 and 2006 for Monte Bondone and of 2006

for the other sites.

2.5 Estimation of grassland ecophysiological

parameters

Canopy light use efficiency (ε) was derived from photo-

synthetically active radiation (PAR) absorbed by the canopy

(APAR) as

ε =
GPP

APAR
=

GPP

PAR× fAPAR

(2)

and was estimated both at midday and daily time resolutions.

We estimated the fraction of PAR absorbed by the canopy

(fAPAR) from measured values of the leaf area index (LAI)

using the Lambert–Beer law:

fAPAR = 0.95
(

1− e(−k LAI)
)
, (3)

where k is the canopy extinction coefficient (fixed at k = 0.4

as defined for a southern mixed-grass prairie in Texas; Kiniry

et al., 2007) and 0.95 is the proportion of intercepted PAR

that is absorbed by plants (Schwalm et al., 2006). LAI was

quantified non-destructively by an indirect method based on

canopy PAR transmission using line PAR sensors (SunScan,

Delta-T, UK) and an inversion of an RTM (Wohlfahrt et al.,

2001). These measurements were done within the footprint

area of the spectroradiometer simultaneously with the hyper-

spectral measurements.

Three additional key parameters of the response of NEE

to PAR were extracted by fitting measured NEE and PAR to

a simple Michaelis–Menten-type model:

NEE=
−αPARFsat

αPAR+Fsat

+Reco, (4)

where α represents the apparent quantum yield (µmol

CO2 µmol−1 photons), Fsat the asymptotic value of GPP

(µmol CO2 m−2 s−1), PAR the photosynthetically active ra-

diation (µmol photons m−2 s−1) and Reco the ecosystem

respiration (µmol CO2 m−2 s−1). For all sites, using the

Levenberg–Marquardt (Marquardt, 1963) algorithm the pa-

rameters of Eq. (4) were estimated by fitting Eq. (4) to both

day and nighttime data, which were pooled into 3-day blocks

centred on the date of the hyperspectral data acquisition.

For each acquisition date, we then used Eq. (3) to derive

GPP at an incident PAR of 1500 µmol m−2 s−1, referred to

as GPPmax in the following.

2.6 Hyperspectral data analysis

In order to explore the information content of the hyperspec-

tral data for estimating CO2 fluxes (i.e. midday and daily

average of NEE and GPP) and ecophysiological parameters

(i.e. α, ε and GPPmax), we performed a correlation analysis

between spectral reflectance indices (independent variables)

and these (dependent) variables. To this end, we derived

spectral ratio (SR; Eq. 5), spectral difference (SD; Eq. 6)

and normalized spectral difference (NSD; Eq. 6) indices us-

ing all possible two-band (i and j ) reflectance (ρ) combi-

nations between 400 and 1000 nm (180 600 combinations).

These three formulations were selected since they represent

the most common equations used to compute vegetation in-

dices (see Table 2).

SRi,j =
ρi

ρj
(5)

SDi,j = ρi − ρj (6)

NSDi,j =
ρi − ρj

ρi + ρj
(7)

Linear regression analysis was performed among all possible

wavelength combinations for all three index types (SR, NSD

and SD) and the investigated dependent variables.

The performance of linear models in predicting dependent

variables (i.e. carbon fluxes and ecophysiological parame-

ters) was evaluated by the coefficient of determination (R2)

and root mean square error (RMSE). The coefficients of de-

termination (R2) resulting from the linear models were visu-

alized in correlograms, as in the example in Fig. 1.

We also calculated four SR and seven NSD indices which

are commonly used in relation to vegetation activity and CO2

fluxes (Table 2). Figure 1 shows the location of these indices

in the waveband space of the correlograms. In this analy-

sis, we also considered the enhanced vegetation index (EVI),

which is one of the most frequently used vegetation indices

to predict CO2 fluxes. In Fig. 1 the location of the EVI is not

www.biogeosciences.net/12/3089/2015/ Biogeosciences, 12, 3089–3108, 2015
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Figure 1. A selected example of a correlogram between NSD-type

indices and midday average GPP for all sites pooled. The correl-

ogram shows all R2 values, the white dot indicates the two-band

combination with the highest R2 value and the red dots indicate

the location of the reference VIs reported in Table 2 (SR: sim-

ple ratio; GRI: green ratio index; WI: water index; SRPI: simple

ratio pigment index; NDVI: normalized difference vegetation in-

dex; NPQI: normalized phaeophytinization index; NPCI: normal-

ized pigment chlorophyll index; CI: chlorophyll index; red-edge

NDVI; SIPI: structural independent pigment index; PRI: photo-

chemical reflectance index).

shown since this index is computed by the combination of

three spectral bands as shown in Table 2.

The robustness of the model selected on the basis of the

best band combinations for all ecophysiological parameters

for each site and all sites pooled was tested by the leave-one-

out cross-validation technique. The predictive performance

was expressed as the cross-validated coefficient of determi-

nation (R2
CV) and the cross-validated root mean square error

(RMSECV). In addition, the capability of the selected mod-

els in predicting different ecophysiological parameters was

tested by applying the selected models to the validation data

set (Table S2) composed of three different grasslands not

used in the previous analysis. This data set was selected be-

cause the hyperspectral and flux data were collected by using

exactly the same protocol applied for the main data set (see

Sect. 2.1).

In order to explore the basis of the correlation between

the selected band combinations and ecophysiological vari-

ables (e.g. α, GPPmax, GPP, ε), the relationship between the

selected bands and biophysical parameters such as dry phy-

tomass, nitrogen and water content collected during the field

campaign in the same footprint of the hyperspectral measure-

ments was examined.

2.7 Band selection based on the combination of

random forests and genetic algorithm (GA–rF)

In order to complement the more conventional analysis de-

scribed in the previous section, we also explored the use of a

hybrid feature selection strategy based on a genetic algorithm

and random forests (GA–rF). The first method was used for

the feature selection and the second one as regression for pre-

dicting the target variables. First of all, the original data set

was aggregated to 10 nm bands in order to reduce the effects

of autocorrelation in frequency space. The algorithm gener-

ates a number of possible model solutions (chromosomes)

and uses these to evolve towards an approximation of the

best solution of the model. In our case the genes of each

chromosome correspond to the wavebands. We made use of

five genes for each chromosome in order to overcome overfit-

ting. Each population of 1000 chromosomes evolved for 200

generations. The mutation chance was set to the inverse of

a population size increase of 1. The fitness of each chromo-

some was measured by applying the random forest algorithm

(Breiman, 2001). This was used as an ensemble method for

regression that is based on the uncontrolled development of

decision trees (n= 100). We opted for this method because

of its demonstrated efficiency with large data sets. In com-

bining the two methods, we choose the mean squared error

as the target variable to be minimized.

3 Results

3.1 Seasonal variation of meteorological variables, LAI

and CO2 fluxes

Environmental conditions and the seasonal development of

LAI, NEE, GPP α, ε and GPPmax during the study period are

shown in Fig. 2. A strong influence of the typical climatic

conditions at the three study sites was evident: Amplero was

characterized by a Mediterranean climate, with highest in-

coming radiation and temperatures and the lowest amount

of precipitation, which translated into a substantial seasonal

drawdown of soil moisture. Monte Bondone and Neustift,

more influenced by a continental Alpine climate, experienced

comparably lower temperatures with higher precipitation and

soil moisture with respect to Amplero (Fig. 2).

Maximum LAI values were similar at Monte Bondone

and Amplero (2.8–3.4 m2 m−2), while twice as much leaf

area developed at the more intensively managed study site

Neustift. The latter was also characterized by higher NEE

and GPP (i.e. more photosynthesis and net uptake of CO2).

The reductions in leaf area related to the cuts of the grass-

lands were associated, as expected, with marked increases

and reductions in NEE and GPP, respectively. The canopy

light use efficiency, ε, was inversely related to GPP and

LAI, peaking at the beginning of the season at Amplero

and Monte Bondone (0.01–0.10 µmol photons µmol−1 CO2),
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Table 2. Summary of the vegetation indices characteristics used in this study.

Index name Formula Use Reference

and acronym

Simple spectral ratio indices

Simple ratio (SR or RVI) SR=R830/R660 Greenness Jordan (1969)

Green ratio index (GRI) GRI=R830/R550 Greenness Peñuelas and Filella (1998)

Water index (WI) WI=R900/R970 Water content, leaf water

potential, canopy water content

Peñuelas et al. (1993)

Simple ratio pigment

index (SRPI)

SRPI= (R430)/(R680) Carotenoid/clorophyll ratio Peñuelas et al. (1995)

Chlorophyll index (CI) CI= (R750/R720)− 1 Chlorophyll content Gitelson et al. (2005)

Normalized spectral difference vegetation indices

Normalized difference

vegetation index (NDVI)

NDVI= (R830−R660) /

(R830+R660)

Greenness Rouse et al. (1973)

Normalized phaeophytinization

index (NPQI)

NPQI= (R415−R435) /

(R415+R435)

Carotenoid/chlorophyll ratio Barnes et al. (1992)

Normalized pigment

chlorophyll index (NPCI)

NPCI= (R680−R430) /

(R680+R430)

Chlorophyll ratio Peñuelas et al. (1994)

Red-edge NDVI NDVIRedEdge = (R750−

R720) /

(R750+R720)

Chlorophyll content Gitelson and

Merzlyak (1994)

Structural independent

pigment index (SIPI)

SIPI= (R800−R445) /

(R800+R445)

Chlorophyll content Peñuelas et al. (1995)

Photochemical reflectance

index (PRI)

PRI= (R531−R570) /

(R531+R570)

Photosynthetic light use

efficiency (and leaf pigment

contents)

Gamon et al. (1992)

Improved for soil and atmospheric effects

Enhanced vegetation

index (EVI)

EVI= 2.5 (R830−R660) /

(1+R830+6R660−7.5R460)

Vegetation index improved for

soil and atmospheric effects

Huete et al. (1997)

while for Neustift ε showed the highest values after the cuts

(0.01–0.20 µmol photons µmol−1 CO2). At Amplero, α and

GPPmax peaked in spring and then decreased during the sum-

mer drought period, while at Neustift and Monte Bondone,

temporal patterns of α and GPPmax were more strongly af-

fected by management.

3.2 Hyperspectral data and their relation to CO2 fluxes

and ecophysiological parameters

Figures 3–5 show correlograms between NSD-, SR- and

SD-type indices, respectively, and the investigated depen-

dent midday ecophysiological parameters and fluxes. The

correlograms for daily data can be found in the Supplement

(Figs. S2–S4 in Supplement). Selected examples of key spec-

tral signatures of the investigated grasslands are shown in

Fig. S1 in the Supplement.

A number of interesting insights may be gained from

Figs. 3–5 and S2–S4, which we summarize in the following:

1. The correlograms exhibited quite different patterns –

some correlograms showed that a wide range of band

combinations was able to explain the simulated quanti-

ties (e.g. GPP at Amplero; Figs. 3 and S2), while some

correlograms exhibited very pronounced patterns, with

the R2 value changing greatly with subtle changes in

band combinations (e.g. ε at Neustift; Figs. 3 and S2).

2. Maximum R2 values were often clearly higher than the

surrounding areas of high predictive power (e.g. ε at

Amplero; Fig. 3).

3. The different types of indices (compare Figs. 3–5)

yielded similarly high correlations with the same depen-

dent variable at the same site in similar spectral regions.

This indicates that band selection is more important for

explanatory power than the mathematical formulation

of the VI (i.e. ratio vs. difference, with/without normal-

ization). SR and NSD indices (Figs. 3 and 4) yielded

similar results compared to SD indices (Fig. 5).

4. The highest correlations for all dependent variables

were found either for indices combining bands in the

visible range (VIS: < 700 nm) or the red edge and

NIR (NIR: > 700 nm), corresponding to spectral re-

gions used by indices such as the SRPI, NPCI, PRI and
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Figure 2. Seasonal variation of meteorological variables, LAI, CO2 fluxes and ecophysiological parameters for the period of the hyperspectral

measurements at the three investigated grasslands. (a) Midday average photosynthetically active radiation (PAR; µmol m−2 s−1; solid black

line) and daily average air temperature (◦C; dotted grey line); (b) daily precipitation (Rain; mm; solid black line) and daily average soil water

content (SWC; m3 m−3; dotted grey line); (c) leaf area index (LAI; m2 m−2; solid black line) and light use efficiency (ε; µmol photons

µmol−1 CO2; dotted grey line); (d) apparent quantum yield (α; µmol CO2 µmol−1 photons; solid black line) and gross primary production

at saturating light (GPPmax; µmol m−2 s−1; dotted grey line); (e) midday average net ecosystem CO2 exchange (NEE; µmol m−2 s−1; solid

black line) and gross primary production (GPP; µmol m−2 s−1; grey dotted line); vertical lines in the lowermost panels indicate the dates of

mowing.

Figure 3. Correlograms of R2 values for α, GPPmax, midday averaged GPP, ε and NEE, on the one hand, and NSD-type indices for Amplero,

Neustift, Monte Bondone (both study years pooled) and all sites pooled on the other. The white dots indicate the position of paired band

combinations corresponding to the maximum R2.
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Figure 4. Correlograms of R2 values for α, GPPmax, midday averaged GPP, ε and NEE, on the one hand, and SR-type indices for Amplero,

Neustift, Monte Bondone (both study years pooled) and all sites pooled on the other. The white dots indicate the position of paired band

combinations corresponding to the maximum R2.

Figure 5. Correlograms of R2 values for α, GPPmax, midday averaged GPP, ε and NEE, on the one hand, and SD-type indices for Amplero,

Neustift, Monte Bondone (both study years pooled) and all sites pooled on the other. The white dots indicate the position of paired band

combinations corresponding to the maximum R2.

NPQI, and the CI and WI, respectively. Spectral regions

of well-known indices, such as NDVI, SR, SIPI or GRI,

which exploit the contrasting reflectance magnitudes in

www.biogeosciences.net/12/3089/2015/ Biogeosciences, 12, 3089–3108, 2015
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Figure 6. Results of linear correlation analysis for α, GPPmax, midday averaged GPP, ε and NEE, on the one hand, and selected best NSD-

type indices for (a) Amplero, (b) Neustift, (c) Monte Bondone (both study years pooled) and (d) all sites pooled on the other. R2 – coefficient

of determination; RMSE – root mean square error; R2
cv – cross-validated coefficient of determination; RMSEcv – cross-validated root mean

square error. The solid red lines indicate the fitted models, and the dotted red lines represent the 95 % upper and lower confidence bounds.

the visible and NIR (Fig. S1), resulted in comparably

lower correlations.

5. For midday and daily time resolutions different band

combinations were selected (e.g. NEE at Amplero;

compare Figs. 4 and S3). For similar selected regions,

daily averages were characterized by higher explanatory

power compared to midday averages (e.g. ε at Neustift).

Figure 6 shows the performance of linear regression mod-

els for the best NSD-type indices for midday ecophysiolog-

ical parameters for each site and all sites pooled (Fig. S7

shows the results of the same analysis for daily averages).

Large differences existed between the study sites regarding

the explanatory power of the same index for the same de-

pendent variable. The highest R2
cv and values were gener-

ally obtained for Amplero, followed by Neustift and then

Monte Bondone, and the lowest R2
cv values resulted when

data from all three sites were pooled, confirming the difficul-

ties in finding a general relation valid among sites.

For Amplero and Neustift the NIR-vs.-NIR combinations

showed a positive linear regression model with α, GPPmax

and GPP, while for Monte Bondone a negative linear corre-

lation was observed. For Amplero the VIS-vs.-VIS combina-

tion showed a good performance in predicting ε; the NIR-vs.-

NIR combinations showed good performance for Neustift,

as did the VIS-vs.-NIR combination for Monte Bondone.

The linear models for NEE were site-specific. In fact, Am-

plero and Monte Bondone showed a positive linear regres-

sion model for NEE, but the VIS-vs.-VIS band combination

was selected for Amplero and the NIR-vs.-NIR combination

for Monte Bondone. Neustift performed well with NEE for

NIR-vs.-NIR combinations, but with an inverse relationship.

The different types of indices (compare Figs. 6, S5 and

S6) resulted in similar models. The different time resolutions

gave different models (e.g. GPP, ε and NEE at Monte Bon-

done; compare Figs. 6 and S7, Figs. S5 and S8, or Figs. S6

and S9).

3.3 Correlation between conventional VIs,

ecophysiological variables and CO2 fluxes

The correlation analysis between the conventional VIs, the

midday CO2 fluxes (Table 3) and ecophysiological parame-

ters (Table 4), generally confirmed the results obtained with

the hyperspectral data.

For the same dependent variable (α, GPPmax, GPP, ε and

NEE), the performance of the various VIs showed large dif-

ferences between sites. For example, for GPPmax all of the in-

vestigated indices except NPQI resulted in significant linear

correlations at Amplero, explaining 41–89 % of the variabil-

ity in GPPmax. In contrast, only NDVI, PRI, NPCI and SRPI

showed a slightly significant linear performance (17–26 %)

for GPPmax at Neustift.

The different VIs performed differently in predicting the

same dependent variable at the different study sites. For all

dependent variables (Tables 3, 4 and S3), the VI resulting in
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Figure 7. Results of validation of linear regression models between VIs ((a) NSD-type; (b) SR-type; (c) SD-type) and ecophysiological

parameters: α, ε (midday average), GPPmax and midday average CO2 fluxes (NEE and GPP). R2 – coefficient of determination. Different

colours represent results of the validation performed applying to the three new sites the model for Amplero (in magenta), Neustift (in red)

and Monte Bondone (in blue) and a model-parameterized grouping Monte Bondone and Neustift (M.Bondone&Neustift; in black). Statistical

significance is indicated as ∗ (p < 0.05), ∗∗ (p < 0.01) and ∗∗∗ (p < 0.001). The black lines are 1 : 1 lines.

the highest R2 values was never the same at all sites. Of-

ten the best-fitting VI at one site resulted in a non-significant

correlation at another site. Therefore, none of the dependent

variables clearly emerged as the one best predicted (Tables 3,

4 and S3).

When data from all sites were pooled, models showed the

same performance for the same VI and dependent variable

except for GPP and NEE. The best-performing VI for GPP

and NEE was SIPI; NPCI performed best for α, GRI for ε

and SIPI for GPPmax.

The choice of the averaging period (midday vs. daily) ap-

plied to ε, NEE and GPP generally did not modify the rank-

ing of the VIs, but theR2 values tended to be similar or some-

what higher on the daily timescale (compare Tables 3 and 4

with Table S3).

3.4 Evaluation of the model performance

Figure 7 shows the results of the validation for each ecophys-

iological parameter and midday averaged fluxes and NSD-,

SR- and SD-type indices against data from the validation

sites. The models used in the validation are based on the

best models determined for each site (i.e. Amplero, Neustift

and Monte Bondone) and on pooling together the two alpine

grasslands of Monte Bondone and Neustift (referred to as

M.Bondone&Neustift).

Overall, the results of the validation were mixed. Good

performance was observed mainly for the Neustift, Monte

Bondone and pooled M.Bondone&Neustift models (see Ta-

ble S4). In particular, the best performance values were ob-

tained for (i) α for the pooled Monte Bondone and Neustift

model for SR-type indices; (ii) GPPmax for NSD-, SR- and

SD-type indices and models except for Amplero; and (iii) for

midday GPP for all NSD-, SR- and SD-type indices and

models. It is interesting to note that lower performances were

generally found for the models based on the Amplero param-

eterization. This is understandable as Monte Bondone and in

particular Neustift were structurally and functionally much

more similar to the validation sites compared to Amplero

(Tables 1 and S2). Considerably poorer performance was ob-

served for ε and NEE across all model–index type combina-

tions (Table S4). The validation on a daily timescale always

resulted in a poorer performance compared to the midday av-

erage timescale (Fig. S10 and Table S5).
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Figure 8. Correlation between selected (a) NSD-, (b) SR- and (c) SD-type indices for the α, GPPmax, midday GPP, midday ε and midday

NEE (plots in the columns) and the total chlorophyll content for Monte Bondone in 2013. R2 – coefficient of correlation; RMSE – root mean

square error; R2
cv – cross-validated coefficient of correlation; RMSEcv – cross-validated root mean square error. The solid red lines indicate

the fitted models, and the dotted red lines represent the 95 % upper and lower confidence bounds. The selected bands for computing NSD-,

SR- and SD-type indices are reported in brackets.

3.5 Effects of canopy structure on selected band

combinations

Tables 5 and S6 show the results of the correlation analy-

sis between the selected NSD-, SR- and SD-type indices for

ecophysiological variables and fluxes and biophysical prop-

erties of vegetation, such as dry phytomass, nitrogen and

water content. Overall, the spectral response in the selected

band combinations for NSD-, SR- and SD-type indices was

strongly related to vegetation properties of the three grass-

lands (e.g. nitrogen and dry phytomass), which impacted on

their spectral response in the NIR and VIS regions. For the

Mediterranean site (Amplero) and for all ecophysiological

parameters (e.g. α, GPPmax), dry phytomass was the main

driving factor of the spectral response in the selected bands,

while nitrogen content drove the spectral response in the NIR

region for Neustift. For Monte Bondone, both dry phytomass

and nitrogen content affected the spectral response of the

grassland. Similar results were obtained for SR- and SD-type

indices.

Figures 8 and S11 show the correlation analysis between

the selected NSD-, SR- and SD-type indices for all ecophys-

iological parameters (e.g. α, GPPmax) and chlorophyll con-

tent for Monte Bondone in 2013. The chlorophyll content

showed a very good correlation for all selected models and

for all indices. The values of R2 were always higher than the

values of R2 obtained for the other biophysical variables (Ta-

bles 5 and S6). In Fig. 9, it is possible to see that NSD- and

SR-type indices for the selected bands for estimating GPP

(i.e. 996 and 710 nm) are strongly correlated with canopy-

total chlorophyll content (R2 > 0.80).

3.6 Band selection using the GA–rF method

Figure 9 shows the results of the band selection based on the

GA–rF method. In particular, each plot represents the fre-

quency of the occurrence of each band in the genetic algo-

rithm.

Overall, using the GA–rF method it was possible to iden-

tify portions of the spectrum that were of particular sig-

nificance for estimating specific properties of the differ-

ent ecosystems. For example, for predicting midday GPP

(Fig. 9b) for all sites pooled together, the bands at 430,

630, 660 and 710 nm showed the best results. The bands at

505 nm, 660 nm and 710 nm played an important role in pre-

dicting midday GPP for Amplero, Neustift and Monte Bon-

done, respectively. Some differences were found for the dif-

ferent time resolutions (compare Fig. 9b and c). For exam-

ple, the bands at 580 and 800 nm showed the best results for

Amplero, and bands at 530 nm showed the best results for

Neustift.
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Figure 9. Results of the GA–rF method for band selection for Amplero, Neustift, Monte Bondone and all sites pooled for (a) α and GPPmax,

(b) midday average ε and CO2 fluxes (NEE and GPP); (c) daily average ε and CO2 fluxes (NEE and GPP).

Figure 10 shows the results for the band selection by GA–

rF methods for biophysical variables (i.e. dry phytomass, ni-

trogen and water content). For the variables related to slow

processes, the GA–rF method highlighted different bands for

different sites; a much higher between-site variability for the

variables related to ecophysiological processes (e.g. ε, α and

GPPmax) was detected, and we weren’t able to identify com-

mon “hot spots”.

4 Discussion

This study aimed at evaluating the potential of hyperspec-

tral reflectance measurements to simulate CO2 fluxes and

ecophysiological variables of European mountain grasslands

over a range of climatic conditions and management prac-

tices (grazing, harvest). To this end, we combined eddy co-

variance CO2 flux measurements with ground-based hyper-

spectral measurements at six mountain grassland sites in Eu-

rope.

4.1 Upscaling of in situ relationships between VI

indices and CO2 fluxes and ecophysiological

parameters

Despite the fact that we focused on a single type of ecosys-

tem, our results showed that large differences existed among

the investigated sites in the relationships between hyperspec-

tral reflectance data and CO2 fluxes and ecophysiological pa-

rameters. For all study sites pooled, hyperspectral reflectance

data explained 40–68 % of the variability in the dependent

variables (Figs. 3–5). The conventional VIs yielded a maxi-

mum of 47 % of explained variability in the data (Tables 3–

4).

This is the first study comparing different grasslands char-

acterized by different plant species and environmental con-
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Figure 10. Results of the GA–rF method for band selection for Amplero, Neustift, Monte Bondone and all sites pooled for dry phytomass,

water and nitrogen content.

ditions. The use of simple models based on a linear relation-

ship between GPP and VIs, related to canopy greenness, has

proven to be a good proxy for the GPP of ecosystems with

strong green-up and senescence (Peng et al., 2011; Rossini et

al., 2012). The loss of this relationship may be related to low

ε variability due to abiotic and biotic stressors, the depen-

dency of PRI on LAI, leaf and canopy biochemical structure

(e.g. leaf orientation), and xanthophyll cycle inhibition or

saturation, and zeaxanthin-independent quenching (Gamon

et al., 2001; Filella et al., 2004; Rahimzadeh-Bajgiran et al.,

2012; Hmimina et al., 2014). For alpine grasslands, a key

meteorological variable that played a relevant role in stimu-

lating ε was high soil water content associated with low tem-

peratures (Polley et al., 2011). Low soil water contents also

triggered a decrease in leaf conductance as well as in ε and in

α for two oak and beech ecosystems (Hmimina et al., 2014).

However, no significant differences in leaf biochemical and

structural properties of the canopy at the lowest and highest

water content were found. In addition, in this special issue,

Sakowska et al. (2014) showed that ε is also strongly affected

by the directional distribution of incident PAR, i.e. the ratio

of direct to diffuse PAR.

Considering all sites pooled together (Figs. 3 and S2),

NSD-type indices showed a very poor correlation in the VIS-

vs.-NIR band combinations (i.e. traditional greenness in-

dices; see Table 2) with GPP. It is well-known in the literature

(Rossini et al., 2010, 2012; Peng et al., 2010; Sakowska et al.,

2014) that greenness indices, for grasslands and crops, are of-

ten good proxies of fAPARgreen (and thus carbon fluxes). In-

terestingly, in our study their performance was considerably

poorer than expected. The NSD-type index showed a better

performance in VIS-vs.-VIS band combinations than VIS-

vs.-NIR ones. VIS-vs.-VIS band combinations for NSD-type

indices (e.g. green vs. blue or red and green vs. green wave-

lengths; see, e.g., Inoue et al., 2008) are defined as green-

ness indices (Fig. 1), although their performance is gener-

ally much poorer than NSD VIS-vs.-NIR indices. These re-

sults are likely due to the confounding effects of the dif-

ferent canopy structures and consequently of the different

NIR response of the investigated grasslands (see Fig. S1).

In fact, the different grassland structures (spatial distribution

of photosynthetic and also non-photosynthetic material, leaf

angles, etc.) affect our ability to use traditional indices to

estimate fAPARgreen (and fluxes) when we consider different

grasslands together because the structural effects on scatter-

ing are very complex in the NIR (Jacquemoud et al., 2009;

Knyazikhin et al., 2012). These results are of importance for

the community, which still relies on these relationships a lot,

also favoured by the availability of affordable narrow-band

sensors that allow continuous monitoring of, e.g., NDVI.

These results suggest that waveband combinations not ex-

ploited by presently used (conventional) VIs may offer con-

siderable potential for predicting grassland CO2 fluxes; this

has implications for the design and capabilities of future

space, airborne or ground-based low-cost sensors. In partic-

ular, these results also have a strong impact on our ability to

upscale grassland fAPARgreen and carbon fluxes using future

sensors (e.g. Sentinel 2).

The evaluation of the models for the main data set against

three new sites showed that at least some of these models

can be transferred to predict carbon fluxes and ecophysio-

logical parameters for similar grasslands (Fig. 7). However,

for some parameters (e.g. ε), the independent validation indi-

cated a poor performance; it challenges the current practice

in upscaling to larger regions by grouping all grasslands into

a single plant functional type (PFT). We advocate more stud-

ies to be conducted merging CO2 flux with hyperspectral data

by means of models which use a more process-oriented and

coupled approach to simulating canopy CO2 exchange and

reflectance in order to explore the causes underlying the ob-

served differences between seemingly closely related study

sites.

4.2 Grassland structural characteristics and their

spectral response

Although we considered similar ecosystems (belonging to

the same vegetation type), the investigated canopies were

very different and included Mediterranean, extensive alpine
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Table 5. Results of the correlation (R2 – coefficient of determination) between the best NDS-, SR- and SD-type indices selected for α,

GPPmax, midday GPP, midday ε and midday NEE and dry phytomass, nitrogen and water content for Amplero, Neustift, Monte Bondone

and all sites pooled. The selected bands for computing NSD-, SR- and SD-type indices are reported in brackets. Statistical significance is

indicated as ∗ (p < 0.05), ∗∗ (p < 0.01) and ∗∗∗ (p < 0.001).

α GPPmax GPP ε NEE

Index Site Parameter R2 R2 R2 R2 R2

(–) (–) (–) (–) (–)

NSD-type Amplero Dry phytomass (g m−2) 0.66∗∗ 0.72∗∗ 0.58∗ 0.76∗∗ 0.36

Amplero Nitrogen content (%) 0.30 0.32 0.19 0.49∗ 0.15

Amplero Water content (%) 0.28 0.53∗ 0.56∗ 0.44 0.55∗

Neustift Dry phytomass (g m−2) 0.00 0.26 0.35 0.44∗ 0.02

Neustift Nitrogen content (%) 0.16 0.15 0.21 0.77∗∗ 0.03

Neustift Water content (%) 0.00 0.00 0.03 0.59∗ 0.10

Monte Bondone Dry phytomass (g m−2) 0.02 0.59∗∗∗ 0.49∗∗∗ 0.55∗∗∗ 0.49∗∗∗

Monte Bondone Nitrogen content (%) 0.08 0.52∗∗∗ 0.38∗∗ 0.48∗∗∗ 0.38∗∗

Monte Bondone Water content (%) 0.09 0.48∗∗∗ 0.35∗∗ 0.42∗∗∗ 0.35∗∗

All Dry phytomass (g m−2) 0.05 0.02 0.02 0. 05 0.00

All Nitrogen content (%) 0.26∗∗∗ 0.04 0.02 0.41∗∗∗ 0.09

All Water content (%) 0.00 0.01 0.01 0.10∗ 0.00

SR-type Amplero Dry phytomass (g m−2) 0.66∗∗ 0.72∗∗ 0.58∗ 0.76∗ 0.36

Amplero Nitrogen content (%) 0.30 0.32 0.20 0.49∗ 0.15

Amplero Water content (%) 0.28 0.53∗ 0.56∗ 0.44 0.55∗

Neustift Dry phytomass (g m−2) 0.00 0.26 0.35 0.44∗ 0.02

Neustift Nitrogen content (%) 0.16 0.15 0.21 0.77∗∗ 0.03

Neustift Water content (%) 0.01 0.00 0.03 0.59* 0.10

Monte Bondone Dry phytomass (g m−2) 0.02 0.50∗∗∗ 0.50∗∗∗ 0.55∗∗∗ 0.45∗

Monte Bondone Nitrogen content (%) 0.08 0.48∗∗∗ 0.38∗∗ 0.48∗∗∗ 0.35

Monte Bondone Water content (%) 0.09 0.44∗∗∗ 0.34∗∗ 0.41∗∗∗ 0.30*

All Dry phytomass (g m−2) 0.08 0.01 0.01 0.05 0.00

All Nitrogen content (%) 0.26∗∗∗ 0.03 0.02 0.40∗∗∗ 0.09

All Water content (%) 0.00 0.01 0.01 0.11* 0.00

SD-type Amplero Dry phytomass (g m−2) 0.64∗∗∗ 0.81∗∗ 0.59∗ 0.58∗ 0.25

Amplero Nitrogen content (%) 0.22 0.30 0.22 0.30 0.03

Amplero Water content (%) 0.16 0.45∗ 0.59∗ 0.19 0.49∗

Neustift Dry phytomass (g m−2) 0.21 0.04 0.37 0.20 0.00

Neustift Nitrogen content (%) 0.11 0.01 0.12 0.81∗∗ 0.08

Neustift Water content (%) 0.02 0.26 0.00 0.64∗ 0.52∗

Monte Bondone Dry phytomass (g m−2) 0.15 0.42∗∗∗ 0.36∗∗ 0.45∗∗∗ 0.36∗∗

Monte Bondone Nitrogen content (%) 0.28∗∗∗ 0.34∗∗ 0.34∗∗ 0.38∗∗ 0.35∗∗

Monte Bondone Water content (%) 0.27∗∗∗ 0.34∗∗ 0.34 0.31∗∗ 0.30∗∗

All Dry phytomass (g m−2) 0.20∗∗∗ 0.01 0.00 0.30∗∗∗ 0.01

All Nitrogen content (%) 0.01 0.01 0.02 0.02 0.11∗

All Water content (%) 0.01 0.03 0.04 0.28∗∗∗ 0.06

and intensive alpine grasslands with very different canopy

structures in terms of leaf orientation, amount and spatial

distribution of green and non-photosynthetic components,

leaf nitrogen, and water content, as detailed in Vescovo et

al. (2012).

For Amplero and Neustift, NSD-type indices performed

well for NIR-vs.-NIR band combinations for all investi-

gated parameters, while Monte Bondone showed best perfor-

mances in the VIS-vs.-NIR band combinations for GPPmax

and ε (Fig. 6). The dry phytomass was the main driving fac-

tor in the spectral response in NIR-vs.-NIR band combina-

tions for Amplero, while nitrogen content drove the spectral

response in NIR-vs.-NIR band combinations of Neustift for

all parameters except for α (Tables 5 and S6). Interestingly,

for Monte Bondone both dry phytomass and nitrogen content

explained the spectral response of the grassland in VIS-vs.-

NIR band combinations for GPPmax and ε, while no signifi-

cant relationships with biophysical variables were found for
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α, GPP or NEE. These results partially confirm the findings

of Vescovo et al. (2012), who highlighted a strong relation-

ship, for several grassland types, between an NSD-type index

and phytomass.

For Monte Bondone, NSD- and SR-type indices for the

selected bands for estimating all variables except α were

strongly correlated with canopy-total chlorophyll content

(R2 > 0.85).

The chlorophyll indices (e.g. red-edge NDVI and CI; see

Tables 3 and 4) – which are considered the best indices for

estimating carbon fluxes in grasslands and crops – showed a

good performance for Amplero and Monte Bondone in our

data set but performed poorly for Neustift.

It was demonstrated by many authors that the red-edge do-

main, where reflectance changes from very low in the absorp-

tion region to high in the NIR, is one of the best descriptors

of chlorophyll concentration. On the other hand, it is well-

known that the canopy structure can be a very strong con-

founding factor. Our results confirm that this topic needs to

be further investigated, as this finding has a relevant impact

concerning the use of Sentinel 2 to upscale fAPAR and carbon

flux observations.

It is interesting to see that the NSD-type indices in the

NIR-vs.-NIR band combinations appeared to be the best

proxy for GPP fluxes when all the grasslands were pooled to-

gether. These results can be linked to the controversial paper

focused on the strong impact of structure on the ability to es-

timate canopy nitrogen content (Knyazikhin et al., 2012) and

confirm the need for more studies in this direction. Good re-

lationships were found between the NIR-vs.-NIR band com-

binations (> 750 nm wavelengths) and fluxes; the physical

basis of these relationships needs to be further investigated.

In fact, it is important to highlight that the literature indicates

that the wavelengths in the NIR (> 750 nm) are not sensitive

to chlorophyll content, but they are related to leaf, canopy

structure and – around the 970 nm area – to water.

As confirmed by comparing the correlation matrix ap-

proach with the GA–rF approach, we could not find a univer-

sal relationship between reflectance in specific wavelengths

of the light spectrum and biophysical properties of vegeta-

tion. We think that this is strongly linked to vegetation struc-

ture effects. For this reason we believe that further research

is necessary to disentangle the impact of factors such as bidi-

rectional reflectance distribution function and scaling effects.

5 Conclusions

The present study focused on understanding the potential of

hyperspectral VIs in predicting grassland CO2 exchange and

ecophysiological parameters (α, ε and GPPmax) for different

European mountain grasslands.

The major finding of this study is that the relation-

ship between ground-based hyperspectral reflectance and the

ecosystem-scale CO2 exchange of mountain grasslands is

much more variable than what might be supposed given this

closely related group of structurally and functionally similar

ecosystems. As a consequence, the unique models of moun-

tain grassland CO2 exchange, i.e. the best-fitting models for

all sites pooled, explained 47 and 68 % of the variability

in the independent variables when established VIs and op-

timized hyperspectral VIs, respectively, were used. Interest-

ingly, VIs based on reflectance either in the visible or NIR

part of the electromagnetic spectrum were superior in pre-

dicting mountain grassland CO2 exchange and ecophysiolog-

ical parameters compared to commonly used VIs, which are

based on a combination of these two wavebands. The band

selection based on the GA–rF algorithm confirmed that it

is difficult to define a universal band range able to describe

ecophysiological parameters, carbon fluxes and biophysical

variables, even for a closely related group of ecosystems.

The take-home message from this study thus is that con-

tinuing efforts are required to better understand differences

in the relationship between ecosystem-scale reflectance and

CO2 exchange and to improve models of this relationship

which can be employed to upscale the land–CO2 exchange

to larger spatial scales based on optical remote-sensing data.

Initiatives such as SpecNet (http://specnet.info; Gamon et

al., 2006), the COST Action ES0903 (EUROSPEC; http:

//cost-es0903.fem-environment.eu/) and the COST Action

ES1309 (OPTIMISE; http://www.cost.eu/domains_actions/

essem/Actions/ES1309) are instrumental in this as they pro-

vide the scale-consistent combination of hyperspectral re-

flectance and CO2 exchange data.

The Supplement related to this article is available online

at doi:10.5194/bg-12-3089-2015-supplement.
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