Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Biogeosciences, 11, 6435-6450, 2014
http://www.biogeosciences.net/11/6435/2014/
doi:10.5194/bg-11-6435-2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
27 Nov 2014
From land use to land cover: restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations
A. V. Di Vittorio1, L. P. Chini2, B. Bond-Lamberty3, J. Mao4, X. Shi4, J. Truesdale5, A. Craig5, K. Calvin3, A. Jones1, W. D. Collins1, J. Edmonds3, G. C. Hurtt2, P. Thornton4, and A. Thomson3 1Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2University of Maryland, College Park, MD, USA
3Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
4Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
5Independent contractor with Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Abstract. Climate projections depend on scenarios of fossil fuel emissions and land use change, and the Intergovernmental Panel on Climate Change (IPCC) AR5 parallel process assumes consistent climate scenarios across integrated assessment and earth system models (IAMs and ESMs). The CMIP5 (Coupled Model Intercomparison Project Phase 5) project used a novel "land use harmonization" based on the Global Land use Model (GLM) to provide ESMs with consistent 1500–2100 land use trajectories generated by historical data and four IAMs. A direct coupling of the Global Change Assessment Model (GCAM), GLM, and the Community ESM (CESM) has allowed us to characterize and partially address a major gap in the CMIP5 land coupling design: the lack of a corresponding land cover harmonization. For RCP4.5, CESM global afforestation is only 22% of GCAM's 2005 to 2100 afforestation. Likewise, only 17% of GCAM's 2040 afforestation, and zero pasture loss, were transmitted to CESM within the directly coupled model. This is a problem because GCAM relied on afforestation to achieve RCP4.5 climate stabilization. GLM modifications and sharing forest area between GCAM and GLM within the directly coupled model did not increase CESM afforestation. Modifying the land use translator in addition to GLM, however, enabled CESM to include 66% of GCAM's afforestation in 2040, and 94% of GCAM's pasture loss as grassland and shrubland losses. This additional afforestation increases CESM vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, which demonstrates that CESM without additional afforestation simulates a different RCP4.5 scenario than prescribed by GCAM. Similar land cover inconsistencies exist in other CMIP5 model results, primarily because land cover information is not shared between models. Further work to harmonize land cover among models will be required to increase fidelity between IAM scenarios and ESM simulations and realize the full potential of scenario-based earth system simulations.

Citation: Di Vittorio, A. V., Chini, L. P., Bond-Lamberty, B., Mao, J., Shi, X., Truesdale, J., Craig, A., Calvin, K., Jones, A., Collins, W. D., Edmonds, J., Hurtt, G. C., Thornton, P., and Thomson, A.: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations, Biogeosciences, 11, 6435-6450, doi:10.5194/bg-11-6435-2014, 2014.
Publications Copernicus
Download
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
Economic models provide scenarios of land use and greenhouse gas emissions to earth system...
Share